搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于4A势能面研究C(3P)+NO(X2)CO(X1+)+N(4S)反应的立体动力学性质

魏强

引用本文:
Citation:

基于4A势能面研究C(3P)+NO(X2)CO(X1+)+N(4S)反应的立体动力学性质

魏强

Exploring the stereodynamics of C(3P)+NO(X2)CO(X1+)+N(4S) reaction on 4A potential energy surface

Wei Qiang
PDF
导出引用
  • 运用准经典轨线方法(QCT), 基于Abrahamsson等构造的4A势能面(Abrahamsson E Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400), 在碰撞能为0.06 eV时, 对C(3P)+NO(X2 )CO(X1+)+N(4S)反应立体动力学性质进行了理论研究. 在考虑反应物NO转动和振动激发的条件下, 计算了质心坐标系下k-j'矢量(k与j'分别为反应物速度与产物角动量)相关的P(r)分布和k-k'-j'矢量(k'为产物相对速度)相关的P(r)分布. 此外还计算了该反应的三个极化微分截面(2/)(d00/dt), (2/)(d20/dt)以及(2/)(d22+dt). 计算结果表明转动和振动激发对产物取向影响较大而对定向影响较小; 对于三个极化微分截面, 转动激发的影响不大, 而振动激发的影响则较大.
    Studies on the dynamical stereochemistry of the titled reaction are carried out by the quasi-classical trajectory (QCT) method based on a new accurate 4A potential energy surface constructed by Abrahamsson and coworkers (Abrahamsson E Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400) at a collision energy of 0.06 eV. The distribution p(r) of the angle between k-j' and the angle distribution P(r in terms of k-k'-j' correlation have been calculated. Results indicate that the rotational angular momentum vector j' of CO is preferentially aligned perpendicular to k and also oriented with respect to the k-k' plane. Three polarization-dependent differential cross sections (2/)(d00/dt), (2/)(d20/dt), and (2/)(d22+/dt) have also been calculated. The preference of backward scattering is found from the results of (2/)(d00/dt). The behavior of (2/)(d20/dt) shows that the variation trend is opposite to that of (2/)(d00/dt), which indicates that j' is preferentially polarized along the direction perpendicular to k. The value of (2/)(d22/dt) is negative for all scattering angles, indicating the marked preference of product alignment along the y-axis. Furthermore, the influences of initial rotational and vibrational excitation on the reaction are shown and discussed. It is found that the initial vibrational excitation and rotational excitation have a larger influence on the alignment distribution of j' but a weaker effect on the orientation distribution of j' in the titled reaction. The influence of the initial vibrational excitation on the three polarization-dependent differential cross sections of product CO is stronger than that of the initial rotational excitation effect.
      通信作者: 魏强, qiangwei@cqut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11204392)和重庆市教委基金(批准号: KJ1400920)资助的课题.
      Corresponding author: Wei Qiang, qiangwei@cqut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11204392), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1400920).
    [1]

    Boger G I, Sternberg A 2005 Astrophys. J. 632 302

    [2]

    Glarborg P, Alzueta M U, K. Dam-Johansen, Miller J A 1998 Combust. Flame. 115 1

    [3]

    Braun W, Bass A M, Davis D D, Simmons J D 1969 Proc. R. Soc. A 312 417

    [4]

    Husain D, Kirsch L J 1971 Chem. Phys. Lett. 8 543

    [5]

    Husain D, Young A N 1974 J. Chem. Soc. Faraday Trans. 71 525

    [6]

    Becker K H, Brockmann K J, Wiesen P 1988 J. Chem. Soc. Faraday Trans. 84 455

    [7]

    Dean A J, Hanson R K, Bowman C T 1991 J. Phys. Chem. 95 3180

    [8]

    Naulin C, Costes M, Dorthe G 1991 Chem. Phys. 153 519

    [9]

    Costes M, Naulin C, Ghanem N, Dorthe G 1993 J Chem. Soc. Faraday Trans. 89 1501

    [10]

    Halvick P, Rayez J C, Evleth E M 1984 J. Chem. Phys. 81 728

    [11]

    Halvick P, Rayez J C 1989 Chem. Phys. 131 375

    [12]

    Monnerville M, Halvick P, Rayez J C 1993 J. Chem. Soc., Faraday Trans. 89 1579

    [13]

    Andersson S, Markovic N, Nyman G 2000 Chem. Phys. 259 99

    [14]

    Andersson S, Markovic N, Nyman G 2000 Phys. Chem. Chem. Phys. 2 613

    [15]

    Andersson S, Markovic N, Nyman G 2003 J. Phys. Chem. A 107 5439

    [16]

    Abrahamsson E, Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400

    [17]

    Abrahamsson E, Andersson S, Nyman G, Markovic N 2006 Chem. Phys. 324 507

    [18]

    Frankcombe T J, Andersson S 2012 J. Phys. Chem. A 116 4705

    [19]

    Han K L, He G Z, Lou N. Q 1989 Chin. J. Chem. Phys. 2 323

    [20]

    Han K L, He G Z, Lou N Q 1993 Chin. Phys. Lett. 4 517

    [21]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [22]

    Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chemical. Physics. 367 115

    [23]

    Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 58 6926]

    [24]

    Liu S L, Shi Y 2011 Chem. Phys. Lett. 501 197

    [25]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [26]

    Ma J J 2013 Acta Phys. Sin. 62 023401 (in Chinese) [马建军 2013 62 023401]

    [27]

    Bai M M, Ge M H, Yang H, Zheng Y J 2012 Chin. Phys. B 21 123401

    [28]

    Duan Z X, Li W L, Qiu M H 2012 J. Chem. Phys. 136 144309

    [29]

    Ma J J, Cong S L 2009 J. At. Mol. Phys. 26 1081

    [30]

    Ma J J, Zou Y, Liu H T 2013 Chin. Phys. B 22 063402

    [31]

    Wei Q 2015 Chin. Phys. Lett. 32 013101

    [32]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [33]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [34]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [35]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. 283 463

    [36]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [37]

    Zhang X, Han K L 2006 Int. J. Quantum Chem. 106 1815

    [38]

    Liu S L, Shi Y 2011 Chin. Phys. B 20 013404

    [39]

    Tan R S, Liu X G, Hu M 2013 Acta Phys. Sin. 62 073105 (in Chinese) [谭瑞山, 刘新国, 胡梅 2013 62 073105]

    [40]

    Li X H, Wang M S, Pino H, Yang C L, Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438

    [41]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [42]

    Chu T S, Zhang X, Han K L 2005 J. Chem. Phys. 122 214301

    [43]

    Chu T S, Han K L, Schatz G C 2007 J. Phys. Chem. A 111 8286

  • [1]

    Boger G I, Sternberg A 2005 Astrophys. J. 632 302

    [2]

    Glarborg P, Alzueta M U, K. Dam-Johansen, Miller J A 1998 Combust. Flame. 115 1

    [3]

    Braun W, Bass A M, Davis D D, Simmons J D 1969 Proc. R. Soc. A 312 417

    [4]

    Husain D, Kirsch L J 1971 Chem. Phys. Lett. 8 543

    [5]

    Husain D, Young A N 1974 J. Chem. Soc. Faraday Trans. 71 525

    [6]

    Becker K H, Brockmann K J, Wiesen P 1988 J. Chem. Soc. Faraday Trans. 84 455

    [7]

    Dean A J, Hanson R K, Bowman C T 1991 J. Phys. Chem. 95 3180

    [8]

    Naulin C, Costes M, Dorthe G 1991 Chem. Phys. 153 519

    [9]

    Costes M, Naulin C, Ghanem N, Dorthe G 1993 J Chem. Soc. Faraday Trans. 89 1501

    [10]

    Halvick P, Rayez J C, Evleth E M 1984 J. Chem. Phys. 81 728

    [11]

    Halvick P, Rayez J C 1989 Chem. Phys. 131 375

    [12]

    Monnerville M, Halvick P, Rayez J C 1993 J. Chem. Soc., Faraday Trans. 89 1579

    [13]

    Andersson S, Markovic N, Nyman G 2000 Chem. Phys. 259 99

    [14]

    Andersson S, Markovic N, Nyman G 2000 Phys. Chem. Chem. Phys. 2 613

    [15]

    Andersson S, Markovic N, Nyman G 2003 J. Phys. Chem. A 107 5439

    [16]

    Abrahamsson E, Andersson S, Nyman G, Markovic N 2008 Phys. Chem. Chem. Phys. 10 4400

    [17]

    Abrahamsson E, Andersson S, Nyman G, Markovic N 2006 Chem. Phys. 324 507

    [18]

    Frankcombe T J, Andersson S 2012 J. Phys. Chem. A 116 4705

    [19]

    Han K L, He G Z, Lou N. Q 1989 Chin. J. Chem. Phys. 2 323

    [20]

    Han K L, He G Z, Lou N Q 1993 Chin. Phys. Lett. 4 517

    [21]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [22]

    Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chemical. Physics. 367 115

    [23]

    Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔浩, 刘新国, 许文武, 梁景娟, 张庆刚 2009 58 6926]

    [24]

    Liu S L, Shi Y 2011 Chem. Phys. Lett. 501 197

    [25]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [26]

    Ma J J 2013 Acta Phys. Sin. 62 023401 (in Chinese) [马建军 2013 62 023401]

    [27]

    Bai M M, Ge M H, Yang H, Zheng Y J 2012 Chin. Phys. B 21 123401

    [28]

    Duan Z X, Li W L, Qiu M H 2012 J. Chem. Phys. 136 144309

    [29]

    Ma J J, Cong S L 2009 J. At. Mol. Phys. 26 1081

    [30]

    Ma J J, Zou Y, Liu H T 2013 Chin. Phys. B 22 063402

    [31]

    Wei Q 2015 Chin. Phys. Lett. 32 013101

    [32]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [33]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [34]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [35]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. 283 463

    [36]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [37]

    Zhang X, Han K L 2006 Int. J. Quantum Chem. 106 1815

    [38]

    Liu S L, Shi Y 2011 Chin. Phys. B 20 013404

    [39]

    Tan R S, Liu X G, Hu M 2013 Acta Phys. Sin. 62 073105 (in Chinese) [谭瑞山, 刘新国, 胡梅 2013 62 073105]

    [40]

    Li X H, Wang M S, Pino H, Yang C L, Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438

    [41]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [42]

    Chu T S, Zhang X, Han K L 2005 J. Chem. Phys. 122 214301

    [43]

    Chu T S, Han K L, Schatz G C 2007 J. Phys. Chem. A 111 8286

  • [1] 周勇. F+CHD3→HF+CD3反应C—H伸缩振动激发的量子动力学研究.  , 2024, 73(9): 098201. doi: 10.7498/aps.73.20231832
    [2] 唐晓平, 周灿华, 和小虎, 于东麒, 杨阳. 碰撞能对H+CH+→C++H2反应立体动力学性质的影响.  , 2017, 66(2): 023401. doi: 10.7498/aps.66.023401
    [3] 唐晓平, 和小虎, 周灿华, 杨阳. 反应物分子初始振动激发对H+CH+C++H2反应的影响.  , 2017, 66(12): 123401. doi: 10.7498/aps.66.123401
    [4] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志. 同位素效应对H+NH→N+H2反应的立体动力学性质的影响.  , 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [5] 胡梅, 刘新国, 谭瑞山. 碰撞能及反应物振动激发对Ar+H2+→ArH++H反应立体动力学性质的影响.  , 2014, 63(2): 023402. doi: 10.7498/aps.63.023402
    [6] 马建军. 碰撞能对反应Sr+CH3I→SrI+CH3的立体动力学影响.  , 2014, 63(6): 063401. doi: 10.7498/aps.63.063401
    [7] 谭瑞山, 刘新国, 胡梅. Li+HF(v = 0–3, j = 0)→LiF+H 反应的立体动力学理论研究.  , 2013, 62(7): 073105. doi: 10.7498/aps.62.073105
    [8] 马建军. 反应物NO的转动激发对反应N(4S)+NO(X2Π)→N2(X3Σg-)+O(3P)影响的立体动力学研究.  , 2013, 62(2): 023401. doi: 10.7498/aps.62.023401
    [9] 夏文泽, 于永江, 杨传路. 同位素取代和碰撞能对N(4S)+H2反应立体动力学性质的影响.  , 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [10] 李红, 郑斌, 孟庆田. 转动激发对O+HBrOH+Br反应的立体动力学性质的准经典轨线理论研究.  , 2012, 61(15): 153401. doi: 10.7498/aps.61.153401
    [11] 王小炼, 冯灏, 孙卫国, 樊群超, 王斌, 曾阳阳. 运用球高斯分布极化势研究低能电子与H2 分子碰撞的振动激发动量迁移散射截面.  , 2011, 60(2): 023401. doi: 10.7498/aps.60.023401
    [12] 宫明艳. He原子和BH分子碰撞体系的转动激发能量转移.  , 2011, 60(7): 073401. doi: 10.7498/aps.60.073401
    [13] 王小炼, 冯灏, 孙卫国, 樊群超, 曾阳阳, 王斌. 低能电子与H2分子碰撞振动激发动量迁移散射截面的研究.  , 2010, 59(2): 937-942. doi: 10.7498/aps.59.937
    [14] 刘新国, 孙海竹, 刘会荣, 张庆刚. O++H2及其同位素取代反应的立体动力学研究.  , 2010, 59(11): 7796-7802. doi: 10.7498/aps.59.7796
    [15] 许雪松, 张文芹, 金坤, 尹淑慧. 反应物分子初始振动激发对O+HCl→OH+Cl反应的立体动力学性质的影响.  , 2010, 59(11): 7808-7814. doi: 10.7498/aps.59.7808
    [16] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. He同位素与H2分子碰撞第二振动激发分波截面的理论研究.  , 2009, 58(6): 3827-3832. doi: 10.7498/aps.58.3827
    [17] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究.  , 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [18] 孔浩, 刘新国, 许文武, 梁景娟, 张庆刚. He+H+2及其同位素取代反应的立体动力学研究.  , 2009, 58(10): 6926-6931. doi: 10.7498/aps.58.6926
    [19] 于江周, 冯 灏, 孙卫国. 低能电子与氮分子碰撞振动激发动量迁移截面的研究.  , 2008, 57(7): 4143-4147. doi: 10.7498/aps.57.4143
    [20] 戴 伟, 冯 灏, 孙卫国, 唐永建, 申 立, 于江周. 用振动密耦合方法研究低能电子与N2分子碰撞的振动激发微分散射截面.  , 2008, 57(1): 143-148. doi: 10.7498/aps.57.143
计量
  • 文章访问数:  5590
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-27
  • 修回日期:  2015-05-12
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map