搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co基金属纤维不对称巨磁阻抗效应

张树玲 陈炜晔 张勇

引用本文:
Citation:

Co基金属纤维不对称巨磁阻抗效应

张树玲, 陈炜晔, 张勇

Asymmetric giant magnetoimpedance of Co-rich melt-extraction microwires

Zhang Shu-Ling, Chen Wei-Ye, Zhang Yong
PDF
导出引用
  • 以直径32 μm的熔体抽拉Co基非晶金属纤维为研究对象, 分析了该纤维不同激励条件下的巨磁阻抗(giant magneto impedance, GMI)效应. 实验结果表明: 这类纤维的GMI效应具有不对称性特点, 即 AGMI (asymmetric GMI)效应. 同时, 发现AGMI效应随激励条件不同而变化, 随交流频率或者激励幅值升高而逐渐增强; 当存在一定偏置电压时, AGMI效应大幅增强. 通过研究纤维的磁化过程, 分析了Co基金属纤维的AGMI效应. 由于Co基熔体抽拉纤维具有螺旋各向异性以及磁滞的存在使得GMI效应具有不对称性, 频率升高或者激励电流幅值增加有利于壳层畴环向磁化, AGMI增强. 当在纤维两端施加偏置电压时, 偏置电流诱发环向磁场增强了环向磁化, AGMI效应提高; 偏置电压较低时磁场响应灵敏度提高, 同时磁化翻转向高场移动, 阻抗线性变化对应的直流磁场区间增大. 这一方面拓宽了GMI传感器工作区间及灵敏度, 另一方面不利于获得更大的磁场响应灵敏度. 10 MHz (5 mA)激励时, 施加1 V强度的偏置电压后, 对应的磁场灵敏度从616 V/T 提高至5687 V/T; 偏置电压为2 V时, 灵敏度降低到4525 V/T. 因此, 可以通过适当提高环向磁场的方法获得大的磁场响应灵敏度及阻抗变化线性区域.
    The giant magnetoimpedance(GMI) effect of Co-rich microwires makes an opportunity to design sensitive GMI weak magnetic meter sensor. Optimization of magnetic meters needs to improve the GMI response, especially the field sensitivity of microwires. In this study, Co-rich amorphous microwires each with an average diameter of 32 μm are prepared by melt-extracted technique and their GMI characteristics are investigated at frequencies ranging from 0.1 to 10 MHz with and without bias direct voltage applied. Experimental results indicate that the GMI effect of these wires has asymmetric features with the increases of frequency and driving current. It is found that the intrinsic asymmetric GMI (AGMI) response results from the helical anisotropy and magnetization hysteresis of the Co-rich microwires. Furthermore, it is found that there is a pronounced improvement in AGMI response when a bias voltage is applied. In theory, the factor which induces an increase in circular magnetic field causes successive changes in magnetization reversal of the quickly quenched Co-rich microwires with multiple domains and helical anisotropy. As a consequence, the circular magnetization process is enhanced, leading to higher circular permeability and stronger GMI response. Meanwhile, a bias voltage inducing the given circular magnetic field reinforces the magnetization process in a certain direction, which intensifies the asymmetric characteristic of GMI response. For example, the asymmetric ratio between two impedance peaks rises from 1.46% to 12.06% at 1MHz and 3 mA after applying a 1 V bias voltage. Simultaneously, the circular field inclines the magnetization off the axial direction which makes the axially induced magnetization reversal more difficult and occur at a higher switching field. This effect broadens the linear impedance zone; however, it reduces the slope of the impedance with the external field and the field sensitivity increasing to some extent. The balance between these two sides proves that AGMI response is related to the magnetization reversal process which is sensitive to the circular magnetic field. Experimental results indicate that the field sensitivity rises from 616 to 5687 V/T with the impedance linear zone broadening from 0.65 to 1.16 when a 1 V bias voltage is applied, while it decreases to 4525 V/T when the bias voltage futher increases to 2 V at 10 MHz and 5 mA. This reveals that the GMI effect of these amorphous Co-rich microwires with high field sensitivity can be optimized by applying proper bias voltage.
    • 基金项目: 山西省自然科学基金(批准号:2014021018-4)、新金属材料国家重点实验室开放课题(批准号:2013-Z06)、宁夏大学科学研究基金(批准号:ZR1411)和宁夏大学博士科研启动基金(批准号:BQD2014019)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Shanxi, China (Grant No. 2014021018-4), the State Key Laboratory of Advanced Metals and Materials, China (Grant No. 2013-Z06), the Natural Science Funds, Ningxia University, China (Grant No. ZR1411), and the Research Starting Funds for Imported Talents, Ningxia University, China(Grant No. BQD2014019).
    [1]

    Mohri K, Kohzawa T, Kawashima K, Yoshida H, Panina L V 1992 IEEE Trans. Magn. 28 3150

    [2]

    Zhukov A, Ipatov M, Churyukanova M, Kaloshkin S, Zhukova V 2014 J. Alloys Compd. 586 5279

    [3]

    Melo L G C, Menard D, Yelon A, Ding L, Saez S, Dolabdjian C 2008 J. Appl. Phys. 103 033903

    [4]

    Han B, Zhang T, Zhang K, Yao B, Yue X L, Huang D Y, Ren H, Tang X Y 2008 IEEE Trans. Magn. 44 605

    [5]

    Antonov A S, Buznikov N A, Granovsky A B 2014 Tech. Phys. Lett. 40 267

    [6]

    Victor Manuel G C, Hector G M 2015 J. Magn. Magn. Mater. 378 485

    [7]

    Gomez-Polo C, Vazquez M 1993 J. Appl. Phys. 62 108

    [8]

    Fang Y Z, Xu Q M, Zheng J J, Wu F M, Ye H Q, Si J X, Zheng J L, Fan X Z,Yang X H 2012 Chin. Phys. B 21 037501

    [9]

    Zhang Y, Dong J, Feng E X, Luo C Q, Liu Q F, Wang J B 2013 Chin. Phys. Lett. 30 037501

    [10]

    Wang W J, Yuan H M, Li J, Ji C J, Dai Y Y, Xiao S Q 2013 Sci. Chin: Phys. Mech. Astron. 43 852 (in Chinese) [王文静,袁慧敏,李娟,姬长建,代由勇,萧淑琴 2013中国科学: 物理学 力学 天文学 43 852]

    [11]

    Panina L V 2002 J. Magn. Magn. Mater. 249 278

    [12]

    Usov N A, Gudoshnikov S A 2013 J. Appl. Phys. 113 243902

    [13]

    Chizhik A, Stupakiewicz A, Zhukov A, Maziewski A, Gonzalez J 2014 Physica B 435 125

    [14]

    Chizhik A, Garcia C, Zhukov A, Gonzalez J, Dominguez L, Blanco J M 2006 Physica B 384 5

    [15]

    Gawronski P, Chizhik A, Blanco J M, Gonzalez J E 2010 IEEE Trans. Magn. 46 365

    [16]

    Ipatov M, Zhukova V, Gonzalez J, Zhukov A 2012 J. Magn. Magn. Mater. 324 4078

    [17]

    Zhukov A, Talaat A, Ipatov M, Blanco J M, Zhukova V 2014 J. Alloys Compd. 615 610

    [18]

    Duque J G S, Araujo A E P D, Knobel M 2006 J. Magn. Magn. Mater. 299 419

    [19]

    Taysioglu A A, Peksoz A, Derebasi N 2013 Sens. Lett. 11 119

    [20]

    Dufay B, Saez S, Dolabdjian C, Yelon A, Menard D 2012 J. Magn. Magn. Mater. 324 2091

  • [1]

    Mohri K, Kohzawa T, Kawashima K, Yoshida H, Panina L V 1992 IEEE Trans. Magn. 28 3150

    [2]

    Zhukov A, Ipatov M, Churyukanova M, Kaloshkin S, Zhukova V 2014 J. Alloys Compd. 586 5279

    [3]

    Melo L G C, Menard D, Yelon A, Ding L, Saez S, Dolabdjian C 2008 J. Appl. Phys. 103 033903

    [4]

    Han B, Zhang T, Zhang K, Yao B, Yue X L, Huang D Y, Ren H, Tang X Y 2008 IEEE Trans. Magn. 44 605

    [5]

    Antonov A S, Buznikov N A, Granovsky A B 2014 Tech. Phys. Lett. 40 267

    [6]

    Victor Manuel G C, Hector G M 2015 J. Magn. Magn. Mater. 378 485

    [7]

    Gomez-Polo C, Vazquez M 1993 J. Appl. Phys. 62 108

    [8]

    Fang Y Z, Xu Q M, Zheng J J, Wu F M, Ye H Q, Si J X, Zheng J L, Fan X Z,Yang X H 2012 Chin. Phys. B 21 037501

    [9]

    Zhang Y, Dong J, Feng E X, Luo C Q, Liu Q F, Wang J B 2013 Chin. Phys. Lett. 30 037501

    [10]

    Wang W J, Yuan H M, Li J, Ji C J, Dai Y Y, Xiao S Q 2013 Sci. Chin: Phys. Mech. Astron. 43 852 (in Chinese) [王文静,袁慧敏,李娟,姬长建,代由勇,萧淑琴 2013中国科学: 物理学 力学 天文学 43 852]

    [11]

    Panina L V 2002 J. Magn. Magn. Mater. 249 278

    [12]

    Usov N A, Gudoshnikov S A 2013 J. Appl. Phys. 113 243902

    [13]

    Chizhik A, Stupakiewicz A, Zhukov A, Maziewski A, Gonzalez J 2014 Physica B 435 125

    [14]

    Chizhik A, Garcia C, Zhukov A, Gonzalez J, Dominguez L, Blanco J M 2006 Physica B 384 5

    [15]

    Gawronski P, Chizhik A, Blanco J M, Gonzalez J E 2010 IEEE Trans. Magn. 46 365

    [16]

    Ipatov M, Zhukova V, Gonzalez J, Zhukov A 2012 J. Magn. Magn. Mater. 324 4078

    [17]

    Zhukov A, Talaat A, Ipatov M, Blanco J M, Zhukova V 2014 J. Alloys Compd. 615 610

    [18]

    Duque J G S, Araujo A E P D, Knobel M 2006 J. Magn. Magn. Mater. 299 419

    [19]

    Taysioglu A A, Peksoz A, Derebasi N 2013 Sens. Lett. 11 119

    [20]

    Dufay B, Saez S, Dolabdjian C, Yelon A, Menard D 2012 J. Magn. Magn. Mater. 324 2091

  • [1] 张建强, 秦彦军, 方峥, 范晓珍, 马云, 李文忠, 杨慧雅, 邝富丽, 翟耀, 师应龙, 党文强, 叶慧群, 方允樟. 多场耦合Fe基合金巨磁阻抗效应调控机制.  , 2022, 71(23): 237501. doi: 10.7498/aps.71.20221376
    [2] 邵先亦, 徐爱娇, 王天乐. 外磁场与带轴夹角对非晶FeSiB/Cu/FeSiB三明治薄带巨磁阻抗特性的影响.  , 2019, 68(6): 067501. doi: 10.7498/aps.68.20181806
    [3] 鲍丙豪, 任乃飞, 骆英. 横向偏置场作用的非晶带巨磁阻抗效应理论.  , 2011, 60(3): 037503. doi: 10.7498/aps.60.037503
    [4] 李印峰, 封素芹, 王建勇. 交流电流对铁基纳米晶丝巨磁阻抗效应形貌的影响.  , 2011, 60(3): 037306. doi: 10.7498/aps.60.037306
    [5] 方允樟, 许启明, 郑金菊, 吕葆华, 潘日敏, 叶慧群, 郑建龙, 范晓珍. FeCo基磁芯螺线管巨磁阻抗效应与磁芯长度关系的研究.  , 2011, 60(12): 127501. doi: 10.7498/aps.60.127501
    [6] 张树玲, 孙剑飞, 邢大伟. 磁场退火对Co基熔体抽拉丝巨磁阻抗效应的影响.  , 2010, 59(3): 2068-2072. doi: 10.7498/aps.59.2068
    [7] 庞 浩, 李 根, 王赞基. 磁环中非晶丝的阻抗效应分析.  , 2008, 57(11): 7194-7199. doi: 10.7498/aps.57.7194
    [8] 潘海林, 程金科, 赵振杰, 何家康, 阮建中, 杨燮龙, 袁望治. LC共振型巨磁阻抗效应的研究.  , 2008, 57(5): 3230-3236. doi: 10.7498/aps.57.3230
    [9] 辛宏梁, 袁望治, 程金科, 林 宏, 阮建中, 赵振杰. NiFeCoP/BeCu复合结构丝的巨磁阻抗效应和磁化频率特性.  , 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152
    [10] 邵明辉, 陈庆永, 郑 鹉. TbDyFe薄膜对三明治膜巨磁阻抗效应的影响.  , 2006, 55(2): 811-815. doi: 10.7498/aps.55.811
    [11] 刘龙平, 赵振杰, 黄灿星, 吴志明, 杨燮龙. 复合结构丝中的电流密度分布和巨磁阻抗效应.  , 2006, 55(4): 2014-2020. doi: 10.7498/aps.55.2014
    [12] 王文静, 袁慧敏, 姜 山, 萧淑琴, 颜世申. FeCuCrVSiB单层和多层膜的横向巨磁阻抗效应.  , 2006, 55(11): 6108-6112. doi: 10.7498/aps.55.6108
    [13] 王文静, 萧淑琴, 刘宜华, 陈卫平, 代由勇, 姜 山, 袁慧敏, 颜世申. 射频溅射功率对FeZrBCu软磁合金薄膜巨磁阻抗效应的影响.  , 2005, 54(4): 1821-1825. doi: 10.7498/aps.54.1821
    [14] 杨全民, 王玲玲, 孙德成. 介观结构对纳米晶软磁合金巨磁阻抗效应影响的理论分析.  , 2005, 54(12): 5730-5737. doi: 10.7498/aps.54.5730
    [15] 陈卫平, 萧淑琴, 王文静, 姜 山, 刘宜华. FeCuCrVSiB多层膜巨磁阻抗效应的研究.  , 2005, 54(6): 2929-2933. doi: 10.7498/aps.54.2929
    [16] 侯碧辉, 刘凤艳, 郭慧群. 磁共振法研究(Fe1-xCox)84Zr3.5Nb 3.5B8Cu1纳米晶薄带的磁各向异性.  , 2003, 52(10): 2622-2626. doi: 10.7498/aps.52.2622
    [17] 刘江涛, 周云松, 王艾玲, 姜宏伟, 郑 鹉. 三明治结构与同轴电缆结构磁性材料巨磁阻抗效应的理论研究.  , 2003, 52(11): 2859-2864. doi: 10.7498/aps.52.2859
    [18] 钟智勇, 兰中文, 张怀武, 刘颖力, 王豪才. 铁磁/非铁磁/铁磁层状薄膜的巨磁阻抗效应的计算.  , 2001, 50(8): 1610-1615. doi: 10.7498/aps.50.1610
    [19] 张 榕, 许裕生. 非晶CoFeNiNbSiB合金的巨磁阻抗效应.  , 1999, 48(13): 175-179. doi: 10.7498/aps.48.175
    [20] 何 峻, 敦慧群, 程利智, 沈保根, 何开元, 刘宜华. 电流退火铁基薄带巨磁阻抗效应的影响.  , 1999, 48(13): 159-163. doi: 10.7498/aps.48.159
计量
  • 文章访问数:  6158
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-01
  • 修回日期:  2015-04-16
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map