搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种采用互补结构的宽阻带共模缺陷地滤波器

曾志斌 姚引娣 庄奕琪

引用本文:
Citation:

一种采用互补结构的宽阻带共模缺陷地滤波器

曾志斌, 姚引娣, 庄奕琪

A broad stopband common-mode suppression defected ground structure filter with complementary structure

Zeng Zhi-Bin, Yao Yin-Di, Zhuang Yi-Qi
PDF
导出引用
  • 为了抑制高速差分信号传输中的共模噪声, 提出了一种基于低成本FR4材料制作的互补型缺陷地结构(defected ground structure, DGS)共模阻带滤波器. 滤波器两边采用对称性酒杯形DGS结构, 中间采用对称伞形DGS结构. 由于这两种DGS 结构互补, 整个滤波器结构紧凑, 可以实现小面积设计目的; 另外, 由于三个DGS结构相邻较近, 相互之间存在互感, 可以通过改变相互之间的距离来调节相互之间的互感, 从而实现宽阻带滤波的目的. 仿真和测试结果表明, 该DGS滤波器的差模信号损耗小, 在抑制共模噪声20 dB条件下其阻带范围为4.8–11.4 GHz, 而且面积仅为10 mm×10 mm. 与周期性DGS结构相比, 本方法在相同共模噪声抑制深度下, 具有占用面积不到30%、阻带宽度增加约50%等优点.
    A low-cost defected ground structure (DGS) wideband stopband filter adopting complementary structure is proposed, which is designed for common-mode noise suppression in high-speed differential signals. The filter is etched below the low cost FR4 printed circuit board. To avoid stimulating the common-mode noise, the DGS cells on ground planes are kept symmetrical to the central line of the two differential signal lines. Both sides of the filter adopt a symmetric cup-shape DGS structure and the middle of the filter adopts a symmetric umbrella-type structure. All of the DGS structures are complementary, which makes the filter compact and miniaturized. What is more, because the spaces among the three DGS are closer, there exist the mutual inductances among them, which are utilized to achieve a wide stopband filter. The simulated result demonstrates the proposed filter has a wideband bandwidth of 6.8 GHz over 20 dB. In order to analyze the effect of compact structure of the filter, a filter having the same DGS patterns but large spaces among them is compared with it. The simulated result demonstrates that the stopband bandwidth of the compared filter has a wideband bandwidth of 4.4 GHz over 20 dB, of which the bandwidth is about 2.4 GHz less than that of the proposed filter. It is obvious that there exists a mutual inductance in the compact DGS structure common-mode filter, which plays an important role in broadening the bandwidth of the proposed filter. In order to facilitate analysis, an equivalent model of LC circuit is also given. The equivalent parameters of LC can be deduced from the definition of 3 dB cut-off frequency and resonant frequency, of which the values can be obtained by the HFSS simulation. The simulated and measured results show that the differential signal under the DGS filter is nearly intact, and the common-mode noise can be reduced over 20 dB from 4.6 GHz to 11.4 GHz and over 15 dB from 4.3 GHz to 12 GHz, while the area of the filter is only 10 mm by 10 mm. Compared with the periodic DGS at the same suppression depth of common-mode noise over 20 dB, the method has the advantages that surface area is reduced to no more than 30%, and the stopband width is increased by over 50%.
    • 基金项目: 国家重大科技专项(批准号: 2012ZX03001018-001)和中央高校基本科研业务费(批准号: JB151109)资助的课题.
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2012ZX03001018-001) and the Fundamental Research Funds for the Central Universities, China (Grant No. JB151109).
    [1]

    Al-Hasan M J, Denidni T A, Sebak A R 2013 IEEE Trans. Antennas Propag. 61 4354

    [2]

    Elena P, Eva R I, Kildal P S 2012 IEEE Microw. Wireless Compon. Lett. 22 129

    [3]

    Kim S H, Lee J Y, Nguyen T T, Jang, J H 2013 IEEE Antennas Wireless Propag. Lett. 12 1468

    [4]

    Jiang D C, Li Y S, Lu J M, Ding T H 2013 J Electron. Inform. Technol. 35 1496 (in Chinese) [蒋冬初, 李玉山, 路建民, 丁同浩 2013 电子与信息学报 35 1496]

    [5]

    Shi L F, Cai C S, Meng C, Cheng L Y 2013 Chin. J. Radio Sci. 28 332 (in Chinese) [史凌峰,蔡成山,孟辰,成立业 2013 电波科学学报 28 332]

    [6]

    Xu H X, Wang G M, Liang J G, Peng Q 2012 Acta Phys. Sin. 61 074101 (in Chinese) [许河秀, 王光明, 梁建刚, 彭清 2012 61 074101]

    [7]

    Gao W D, Liu H, Sun R H 2013 J. Shanghai Jiaotong Univ. 47 1109 (in Chinese) [高卫东, 刘汉, 孙荣辉 2013 上海交通大学学报 47 1109]

    [8]

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 207301 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 62 207301]

    [9]

    Ahn D, Park J S, Kim C S, Kim J, Qian Y X, Itoh T 2001 IEEE Trans. Microw. Theory Technol. 49 86

    [10]

    Karmakar N, Roy S M, Balbin I 2006 IEEE Trans. Microw. Theory Technol. 54 2160

    [11]

    Woo D J, Lee T K, Lee J W 2013 IEEE Microw. Wireless Compon. Lett. 23 447

    [12]

    Liu W T, Tsai C H, Han T W, Wu T L 2008 IEEE Microw. Wireless Compon. Lett. 18 248

    [13]

    Yang F X, Tang M, Wu L S, Mao J F 2014 IEEE Electrical Design of Advanced Packaging m& Systems Symposium Bangalore, India, December 14-16, 2014 p129

    [14]

    Lee J K, Kim Y S 2010 IEEE Microw. Wireless Compon. Lett. 20 316

    [15]

    Wu S J, Tsai C H, Wu T L, Itoh T 2009 IEEE Trans. Microw. Theory Technol. 57 848

    [16]

    Kufa M, Raida Z 2013 Elect. Lett. 49 199

    [17]

    Pang Y Y, Feng Z H 2012 Microwave and Millimeter Wave Technology Shenzhen, China, May 5-8, 2012 p1

    [18]

    Song Y H, Yang G M, Wen G Y 2014 IEEE Microw. Wireless Compon. Lett. 24 230

    [19]

    Hong J S G, Lancaster M J 2001 Microstrip Filter for RF/Microwave Applications (New York: Wiley) pp248-255

  • [1]

    Al-Hasan M J, Denidni T A, Sebak A R 2013 IEEE Trans. Antennas Propag. 61 4354

    [2]

    Elena P, Eva R I, Kildal P S 2012 IEEE Microw. Wireless Compon. Lett. 22 129

    [3]

    Kim S H, Lee J Y, Nguyen T T, Jang, J H 2013 IEEE Antennas Wireless Propag. Lett. 12 1468

    [4]

    Jiang D C, Li Y S, Lu J M, Ding T H 2013 J Electron. Inform. Technol. 35 1496 (in Chinese) [蒋冬初, 李玉山, 路建民, 丁同浩 2013 电子与信息学报 35 1496]

    [5]

    Shi L F, Cai C S, Meng C, Cheng L Y 2013 Chin. J. Radio Sci. 28 332 (in Chinese) [史凌峰,蔡成山,孟辰,成立业 2013 电波科学学报 28 332]

    [6]

    Xu H X, Wang G M, Liang J G, Peng Q 2012 Acta Phys. Sin. 61 074101 (in Chinese) [许河秀, 王光明, 梁建刚, 彭清 2012 61 074101]

    [7]

    Gao W D, Liu H, Sun R H 2013 J. Shanghai Jiaotong Univ. 47 1109 (in Chinese) [高卫东, 刘汉, 孙荣辉 2013 上海交通大学学报 47 1109]

    [8]

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 207301 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 62 207301]

    [9]

    Ahn D, Park J S, Kim C S, Kim J, Qian Y X, Itoh T 2001 IEEE Trans. Microw. Theory Technol. 49 86

    [10]

    Karmakar N, Roy S M, Balbin I 2006 IEEE Trans. Microw. Theory Technol. 54 2160

    [11]

    Woo D J, Lee T K, Lee J W 2013 IEEE Microw. Wireless Compon. Lett. 23 447

    [12]

    Liu W T, Tsai C H, Han T W, Wu T L 2008 IEEE Microw. Wireless Compon. Lett. 18 248

    [13]

    Yang F X, Tang M, Wu L S, Mao J F 2014 IEEE Electrical Design of Advanced Packaging m& Systems Symposium Bangalore, India, December 14-16, 2014 p129

    [14]

    Lee J K, Kim Y S 2010 IEEE Microw. Wireless Compon. Lett. 20 316

    [15]

    Wu S J, Tsai C H, Wu T L, Itoh T 2009 IEEE Trans. Microw. Theory Technol. 57 848

    [16]

    Kufa M, Raida Z 2013 Elect. Lett. 49 199

    [17]

    Pang Y Y, Feng Z H 2012 Microwave and Millimeter Wave Technology Shenzhen, China, May 5-8, 2012 p1

    [18]

    Song Y H, Yang G M, Wen G Y 2014 IEEE Microw. Wireless Compon. Lett. 24 230

    [19]

    Hong J S G, Lancaster M J 2001 Microstrip Filter for RF/Microwave Applications (New York: Wiley) pp248-255

  • [1] 罗宇轩, 程用志, 陈浮, 罗辉, 李享成. 基于沙漏形人工表面等离激元和交指电容结构的双频滤波器设计.  , 2023, 72(4): 044101. doi: 10.7498/aps.72.20221984
    [2] 陈旭生, 李九生. 缺陷组合嵌入VO2薄膜结构的可调太赫兹吸收器.  , 2020, 69(2): 027801. doi: 10.7498/aps.69.20191511
    [3] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器.  , 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [4] 李锟影, 李璞, 郭晓敏, 郭龑强, 张建国, 刘义铭, 徐兵杰, 王云才. 利用光反馈多模激光器结合滤波器产生平坦混沌.  , 2019, 68(11): 110501. doi: 10.7498/aps.68.20190171
    [5] 王帆, 李豫东, 郭旗, 汪波, 张兴尧, 文林, 何承发. 基于4晶体管像素结构的互补金属氧化物半导体图像传感器总剂量辐射效应研究.  , 2016, 65(2): 024212. doi: 10.7498/aps.65.024212
    [6] 杨韵茹, 关建飞. 基于金属-电介质-金属波导结构的等离子体滤波器的数值研究.  , 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [7] 兰峰, 高喜, 亓丽梅. 基于频率选择表面的双层改进型互补结构太赫兹带通滤波器研究.  , 2014, 63(10): 104209. doi: 10.7498/aps.63.104209
    [8] 陈明惠, 丁志华, 王成, 宋成利. 基于法布里-珀罗调谐滤波器的傅里叶域锁模扫频激光光源.  , 2013, 62(6): 068703. doi: 10.7498/aps.62.068703
    [9] 焦健, 高劲松, 徐念喜, 陈新. 基于互补屏的极化分离结构设计研究.  , 2013, 62(19): 197303. doi: 10.7498/aps.62.197303
    [10] 桑田, 蔡托, 刘芳, 蔡绍洪, 张大伟. 带虚设层的抗反射结构导模共振滤波器设计与分析.  , 2013, 62(2): 024215. doi: 10.7498/aps.62.024215
    [11] 葛文琦, 柴路, 胡明列, 王清月, 苏良碧, 李红军, 郑丽和, 徐军. 镱钠共掺氟化钙锁模激光器产生190 fs光脉冲.  , 2012, 61(1): 014213. doi: 10.7498/aps.61.014213
    [12] 崔广斌, 苗俊刚, 张勇芳. 亚毫米波段波导阵列结构频率选择性滤波器的设计.  , 2012, 61(22): 224102. doi: 10.7498/aps.61.224102
    [13] 刘其海, 胡冬生, 尹小刚, 王彦庆. 由单负材料组成的含有缺陷层的一维光子晶体结构中的缺陷模.  , 2011, 60(9): 094101. doi: 10.7498/aps.60.094101
    [14] 麻健勇, 刘世杰, 魏朝阳, 晋云霞, 赵元安, 邵建达, 范正修. 可见光波段双层浮雕型导模共振滤波器设计与分析.  , 2008, 57(7): 4195-4201. doi: 10.7498/aps.57.4195
    [15] 麻健勇, 刘世杰, 魏朝阳, 许 程, 晋云霞, 赵元安, 邵建达, 范正修. 反射型导模共振滤波器设计.  , 2008, 57(2): 827-832. doi: 10.7498/aps.57.827
    [16] 温晓文, 李国俊, 仇高新, 李永平, 丁 磊, 隋 展. 多缺陷结构的一维磁光多层膜隔离器.  , 2004, 53(10): 3571-3576. doi: 10.7498/aps.53.3571
    [17] 赵 莉, 陈赓华, 张利华, 黄旭光, 翟光杰, 李俊文, 汤玉林, 冯 稷. 互补型自适应滤波器在心磁信号处理中的应用.  , 2004, 53(12): 4420-4427. doi: 10.7498/aps.53.4420
    [18] 曹 辉, 孙军强, 张新亮, 肖凌燕, 黄德修. 一种新颖的超结构光纤Bragg光栅梳状滤波器的设计.  , 2004, 53(9): 3077-3082. doi: 10.7498/aps.53.3077
    [19] 刘海文, 孙晓玮, 李征帆, 钱 蓉, 周 旻. 基于分形特征和双层光子带隙结构的宽阻带低通滤波器.  , 2003, 52(12): 3082-3086. doi: 10.7498/aps.52.3082
    [20] 刘 力, 邓小强, 王桂英, 徐至展. 改善共焦系统轴向分辨率的位相型光瞳滤波器.  , 2001, 50(1): 48-51. doi: 10.7498/aps.50.48
计量
  • 文章访问数:  6168
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-30
  • 修回日期:  2015-03-12
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map