搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

49S里德堡态的射频双光子光谱

李敬奎 杨文广 宋振飞 张好 张临杰 赵建明 贾锁堂

引用本文:
Citation:

49S里德堡态的射频双光子光谱

李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂

Two-photon radio frequency spectroscopy of 49S Rydberg state

Li Jing-Kui, Yang Wen-Guang, Song Zhen-Fei, Zhang Hao, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang
PDF
导出引用
  • 在室温铯原子蒸气池中, 由铯原子基态、激发态和里德堡态构建了阶梯型三能级系统, 研究了里德堡原子阶梯型三能级系统的电磁感应透明(EIT). 在实现电磁感应透明的基础上, 利用16.9 GHz的射频电场耦合相邻的原子里德堡态, 实现49S1/2→47D3/2的双光子跃迁, 测量了里德堡原子的射频双光子光谱, 观察到了电磁感应透明光谱的分裂, 进一步研究了电场强度对射频双光子光谱的影响. 利用里德堡原子的EIT效应可实现对射频电场幅值和极化的精密测量, 具有潜在的应用前景.
    Rydberg atoms, with large principal quantum number, exhibit certain properties, such as long lifetimes and strong interactions with fields and other atoms, which have been extensively investigated recently. One of the properties is the electromagnetically induced transparency (EIT) of Rydberg ladder system, which can be used to measure the radio frequency (RF) field with high sensitivity. In this paper, we investigate the quantum coherent effect of cesium Rydberg atom in a three-level ladder system involving the ground state (6S1/2), the excited state (6P3/2) and 49S1/2 Rydberg state in room temperature vapor cell. The probe laser (852 nm) drives the transition of 6S1/2(F=4)→6P3/2(F'=5), while the coupling laser (510 nm) couples the Rydberg transition of 6P3/2 (F'=5)→nS1/2. A typical electromagnetically induced transparency spectrum is obtained when the weak probe laser is scanned through the transition of 6S1/2(F=4)→6P3/2(F'=5) and the coupling laser tuning to Rydberg transition. The two-photon RF spectra are observed when the RF field with a frequency of ~16.9 GHz couples the Rydberg transition of 49S1/2→47D3/2, where the EIT signal is split into two EIT peaks due to the interaction between the RF field and Rydberg atoms. The dependences of EIT splitting on the power of RF field are investigated. The results show that the EIT splitting increases with the power of RF field, which can inversely be used to measure the RF field with a higher spatial resolution in the future.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921603)、国家自然科学基金(批准号: 11274209, 61475090, 61378013, 61378039)和山西省留学基金(批准号: 2014-009)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 11274209, 61475090, 61378013, 61378039), and the Project of Shanxi Scholarship Council of China (Grant No. 2014-009).
    [1]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [2]

    Fleischhauer M, Keitel C H, Scully M O 1992 Phys. Rev. A 46 1468

    [3]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783

    [4]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [5]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [6]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp11-47

    [7]

    Weatherill K J, Pritchard J D, Abel R P, Bason M G, Mohapatra A K, Adams C S 2008 J. Phys. B 41 201002

    [8]

    Bason M G, Mohapatra A K, Weatherill K J, Adams C S 2008 Phys. Rev. A 77 032305

    [9]

    Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nature Phys. 4 890

    [10]

    Abi-Salloum T Y 2010 Phys. Rev. A 81 053836

    [11]

    Teo B K, Feldbaum D, Cubel T, Guest J R, Berman P R, Raithel G 2003 Phys. Rev. A 68 053407

    [12]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57

    [13]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [14]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001

    [15]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Jones M P A, Adams C S 2014 Phys. Rev. A 89 043827

    [16]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001

    [17]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102

    [18]

    Gentile T R, Hughey B J, Kleppner D 1989 Phys. Rev. A 40 5103

  • [1]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [2]

    Fleischhauer M, Keitel C H, Scully M O 1992 Phys. Rev. A 46 1468

    [3]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783

    [4]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [5]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [6]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp11-47

    [7]

    Weatherill K J, Pritchard J D, Abel R P, Bason M G, Mohapatra A K, Adams C S 2008 J. Phys. B 41 201002

    [8]

    Bason M G, Mohapatra A K, Weatherill K J, Adams C S 2008 Phys. Rev. A 77 032305

    [9]

    Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nature Phys. 4 890

    [10]

    Abi-Salloum T Y 2010 Phys. Rev. A 81 053836

    [11]

    Teo B K, Feldbaum D, Cubel T, Guest J R, Berman P R, Raithel G 2003 Phys. Rev. A 68 053407

    [12]

    Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, Vuletić V 2012 Nature 488 57

    [13]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [14]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2013 Phys. Rev. Lett. 110 103001

    [15]

    Maxwell D, Szwer D J, Paredes-Barato D, Busche H, Pritchard J D, Gauguet A, Jones M P A, Adams C S 2014 Phys. Rev. A 89 043827

    [16]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001

    [17]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102

    [18]

    Gentile T R, Hughey B J, Kleppner D 1989 Phys. Rev. A 40 5103

  • [1] 夏刚, 张亚鹏, 汤婧雯, 李春燕, 吴春旺, 张杰, 周艳丽. 电磁感应透明条件下里德伯原子系统的亚稳动力学.  , 2024, 73(10): 104203. doi: 10.7498/aps.73.20240233
    [2] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量.  , 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [3] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收.  , 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [4] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位.  , 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [5] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明.  , 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [6] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转.  , 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [7] 张岩, 刘一谋, 韩明, 王刚成, 崔淬砺, 郑泰玉. 二维电磁感应光子带隙的动态生成与调控.  , 2014, 63(22): 224203. doi: 10.7498/aps.63.224203
    [8] 于淼, 张 岩, 房博, 高俊艳, 高金伟, 吴金辉. 电磁感应双光子带隙的产生和控制.  , 2012, 61(13): 134204. doi: 10.7498/aps.61.134204
    [9] 邱田会, 杨国建. 微波射频场调制下Λ型三能级原子系统的电磁感应光栅.  , 2012, 61(1): 014205. doi: 10.7498/aps.61.014205
    [10] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转.  , 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [11] 杨保东, 高静, 王杰, 张天才, 王军民. 铯6S1/2 -6P3/2 -8S1/2阶梯型系统中超精细能级的多重电磁感应透明.  , 2011, 60(11): 114207. doi: 10.7498/aps.60.114207
    [12] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环.  , 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [13] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构.  , 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [14] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究.  , 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [15] 陈 峻, 刘正东, 尤素萍. 准Λ型四能级原子系统中的烧孔和光学双稳现象.  , 2006, 55(12): 6410-6413. doi: 10.7498/aps.55.6410
    [16] 房元锋, 杜春光, 李师群. 光子晶体中四能级系统的量子相干效应.  , 2006, 55(9): 4652-4658. doi: 10.7498/aps.55.4652
    [17] 王 波, 李淑静, 常 宏, 武海斌, 谢常德, 王 海. 三能级原子系统中单光子频率失谐对光减速的影响.  , 2005, 54(9): 4136-4140. doi: 10.7498/aps.54.4136
    [18] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究.  , 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [19] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明.  , 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [20] 李永放, 孙建锋. 梯型四能级系统中超窄电磁感应透明与无反转增益.  , 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
计量
  • 文章访问数:  6320
  • PDF下载量:  387
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-10
  • 修回日期:  2015-04-22
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map