搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆截面直流道中微粒黏弹性聚焦机理研究

戴卿 项楠 程洁 倪中华

引用本文:
Citation:

圆截面直流道中微粒黏弹性聚焦机理研究

戴卿, 项楠, 程洁, 倪中华

Viscoelastic focusing of microparticles in circular cross-sectional microchannels

Dai Qing, Xiang Nan, Cheng Jie, Ni Zhong-Hua
PDF
导出引用
  • 微粒黏弹性聚焦技术近年来受到了广泛的研究重视, 但影响粒子聚焦特性的关键参数调控机理仍不清楚. 基于此目的, 本文量化研究了圆截面直流道中非牛顿流体诱导微粒黏弹性聚焦的行为, 给出了流速和流道长度对粒子聚焦特性的调控机理. 具体而言: 首先, 对比分析不同黏度牛顿流体(水和22 wt%甘油水溶液)和非牛顿流体(8 wt%聚乙烯吡咯烷酮水溶液)中粒子横向迁移行为, 发现非牛顿流体中粒子将在弹性力主导下聚焦至流道中心区域, 而牛顿流体中粒子则在惯性升力主导下迁移形成Segré-Silberberg圆环. 其次, 量化分析粒子尺寸和驱动流速对黏弹性聚焦效果的影响, 发现随着流速的增加, 粒子聚焦效果逐渐变好并最终趋于稳定, 且大粒子较小粒子具有更好的聚焦效果. 最后, 研究粒子沿流道长度的动态聚焦过程, 推导并验证了粒子聚焦所需安全流道长度的数学模型, 发现大粒子聚焦所需安全流道长度显著短于小粒子. 上述研究结果对于提升粒子黏弹性聚焦机理和过程的理解, 实现微粒聚焦特性的灵活控制具有非常重要的意义.
    Particle focusing induced by viscoelasticity of fluids has attracted increasing interest in recent years. However, the regulation mechanisms of critical parameters affecting the particle focusing behaviors are still unclear. This paper systematically characterized the dynamics of particle migration in non-Newtonian fluid flows, and analyzed the effects of flow rate and channel length on particle focusing behaviors. Först, the lateral migration behaviors of particles suspended in Newtonian fluids (e.g., pure water and 22 wt% glycerol aqueous solution) are compared with those in non-Newtonian fluids (8 wt% polyvinylpyrrolidone aqueous solution). It is found that the particles suspended in non-Newtonian fluids would migrate towards the channel centerline and form a single-line particle array under the action of elastic force while the particles suspended in Newtonian fluids would migrate to form a famous Segré-Silberberg particle annular ring due to the effects of inertial lift forces. Second, the effects of particle size and driving flow rate on particle viscoelastic focusing are quantitatively analyzed. Results show that with increasing flow rate the focusing degree increases and finally stabilize at a certain value, and the large particles have better focusing quality than the small ones. Finally, the dynamic focusing process of particles along the channel length is investigated. A mathematical model of safe channel length for achieving particle focusing is derived and validated by experiments. It is found that the safe channel length for large particles is significantly shorter than that for small ones. The obtained results would improve the understanding of particle focusing processes and mechanisms, and help realize the flexible control of particle migration behaviors in non-Newtonian fluids.
    • 基金项目: 国家自然科学基金(批准号: 51375089)、高等学校博士学科点专项科研基金(批准号: 20110092110003)和江苏省自然科学基金(批准号: BK2011336)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51375089), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110092110003), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011336).
    [1]

    Hsu C H, Di C D, Chen C, Irimia D, Toner M 2008 Lab. Chip 8 2128

    [2]

    Shelby J P, Lim D S W, Kuo J S, Chiu D T 2003 Nature 425 38

    [3]

    Xiang N, Chen K, Sun D K, Wang S F, Yi H, Ni Z H 2013 Microfluid Nanofluid 14 89

    [4]

    Sun D K, Jiang D, Xiang N, Chen K, Ni Z H 2013 Chin. Phys. Lett. 30 74702

    [5]

    Yang S, Undar A, Zahn J D 2006 Lab. Chip 6 871

    [6]

    Kang K, Lee S S, Hyun K, Lee S J, Kim J M 2013 Nat. Commun. 4 2567

    [7]

    Hu J, Deng X, Sang S B, Li P W, Li G, Zhang W D 2014 Acta Phys. Sin. 63 207102 (in Chinese) [胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋 2014 63 207102]

    [8]

    Sun Y L, Wang C H, Le Z C 2014 Acta Phys. Sin. 63 154701 (in Chinese) [孙运利, 王昌辉, 乐孜纯 2014 63 154701]

    [9]

    Karnis A, Mason S G 1966 Trans. Soc. Rheol. 10 571

    [10]

    Gauthier F, Goldsmith H L, Mason S G 1971 Rheol. Acta 10 344

    [11]

    Gauthier F, Goldsmith H L, Mason S G 1971 Trans. Soc. Rheol. 15 297

    [12]

    Ho B P, Leal L G 1976 J. Fluid Mech. 76 783

    [13]

    Gao S X, Hartnett J P 1993 Int. Comm. Heat Mass Transfer 20 197

    [14]

    Huang P Y, Feng J, Hu H H, Joseph D D 1997 J. Fluid Mech. 343 73

    [15]

    Leshansky A M, Bransky A, Korin N, Dinnar U 2007 Phys. Rev. Lett. 98 234501

    [16]

    Villone M M, D’Avino G, Hulsen M A, Greco F, Maffettone P L 2013 J. Non-Newton. Fluid Mech. 195 1

    [17]

    Cha S, Shin T, Lee S S, Shim W, Lee G, Lee S J, Kim Y, Kim J M 2012 Anal. Chem. 84 10471

    [18]

    Villone M M, D’Avino G, Hulsen M A, Greco F, Maffettone P L 2011 J. Non-Newton. Fluid Mech. 166 1396

    [19]

    Lim E J, Ober T J, Edd J F, Desai S P, Neal D, Bong K W, Doyle P S, McKinley G H, Toner M 2014 Nat. Commun. 5 4120

    [20]

    Del G F, Romeo G, D’Avino G, Greco F, Netti P A, Maffettone P L 2013 Lab. Chip 13 4263

    [21]

    Nam J, Lim H, Kim D, Jung H, Shin S 2012 Lab. Chip 12 1347

    [22]

    Lee D J, Brenner H, Youn J R, Song Y S 2013 Sci. Rep. 3 3258

    [23]

    Yang S, Kim J Y, Lee S J, Lee S S, Kim J M 2011 Lab. Chip 11 266

    [24]

    James D F 1966 Nature 212 754

    [25]

    Merrington A C 1943 Nature 152 663

    [26]

    Weissenberg K 1947 Nature 159 310

    [27]

    James D F 2009 Annu. Rev. Fluid Mech. 41 129

    [28]

    Yang S, Lee S S, Ahn S W, Kang K, Shim W, Lee G, Hyun K, Kim J M 2012 Soft Matter 8 5011

    [29]

    Won Seo K, Ran H Y, Joon L S 2014 Appl. Phys. Lett. 104 213702

    [30]

    Tehrani M A 1996 J. Rheol. 40 1057

    [31]

    D’Avino G, Romeo G, Villone M M, Greco F, Netti P A, Maffettone P L 2012 Lab. Chip 12 1638

    [32]

    Sun D K, Xiang N, Chen K, Ni Z H 2013 Acta Phys. Sin. 62 24703 (in Chinese) [孙东科, 项楠, 陈科, 倪中华 2013 62 24703]

    [33]

    Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H 2013 Chin. Phys. B 22 114704

    [34]

    Kang A, Ahn S, Lee S, Lee B, Lee S, Kim J 2011 Korea-Aust. Rheol. J: 23 247

    [35]

    Segre G, Silberberg A 1961 Nature 189 209

    [36]

    Xiang N, Yi H, Chen K, Sun D, Jiang D, Dai Q, Ni Z H 2013 Biomicrofluidics 7 44116

    [37]

    Di C D, Irimia D, Tompkins R G, Toner M 2007 Proc. Natl. Acad. Sci. U. S. A 104 18892

    [38]

    Asmolov E S 1999 J. Fluid Mech. 381 63

    [39]

    Seo K W, Byeon H J, Huh H K, Lee S J 2014 RSC Adv. 4 3512

  • [1]

    Hsu C H, Di C D, Chen C, Irimia D, Toner M 2008 Lab. Chip 8 2128

    [2]

    Shelby J P, Lim D S W, Kuo J S, Chiu D T 2003 Nature 425 38

    [3]

    Xiang N, Chen K, Sun D K, Wang S F, Yi H, Ni Z H 2013 Microfluid Nanofluid 14 89

    [4]

    Sun D K, Jiang D, Xiang N, Chen K, Ni Z H 2013 Chin. Phys. Lett. 30 74702

    [5]

    Yang S, Undar A, Zahn J D 2006 Lab. Chip 6 871

    [6]

    Kang K, Lee S S, Hyun K, Lee S J, Kim J M 2013 Nat. Commun. 4 2567

    [7]

    Hu J, Deng X, Sang S B, Li P W, Li G, Zhang W D 2014 Acta Phys. Sin. 63 207102 (in Chinese) [胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋 2014 63 207102]

    [8]

    Sun Y L, Wang C H, Le Z C 2014 Acta Phys. Sin. 63 154701 (in Chinese) [孙运利, 王昌辉, 乐孜纯 2014 63 154701]

    [9]

    Karnis A, Mason S G 1966 Trans. Soc. Rheol. 10 571

    [10]

    Gauthier F, Goldsmith H L, Mason S G 1971 Rheol. Acta 10 344

    [11]

    Gauthier F, Goldsmith H L, Mason S G 1971 Trans. Soc. Rheol. 15 297

    [12]

    Ho B P, Leal L G 1976 J. Fluid Mech. 76 783

    [13]

    Gao S X, Hartnett J P 1993 Int. Comm. Heat Mass Transfer 20 197

    [14]

    Huang P Y, Feng J, Hu H H, Joseph D D 1997 J. Fluid Mech. 343 73

    [15]

    Leshansky A M, Bransky A, Korin N, Dinnar U 2007 Phys. Rev. Lett. 98 234501

    [16]

    Villone M M, D’Avino G, Hulsen M A, Greco F, Maffettone P L 2013 J. Non-Newton. Fluid Mech. 195 1

    [17]

    Cha S, Shin T, Lee S S, Shim W, Lee G, Lee S J, Kim Y, Kim J M 2012 Anal. Chem. 84 10471

    [18]

    Villone M M, D’Avino G, Hulsen M A, Greco F, Maffettone P L 2011 J. Non-Newton. Fluid Mech. 166 1396

    [19]

    Lim E J, Ober T J, Edd J F, Desai S P, Neal D, Bong K W, Doyle P S, McKinley G H, Toner M 2014 Nat. Commun. 5 4120

    [20]

    Del G F, Romeo G, D’Avino G, Greco F, Netti P A, Maffettone P L 2013 Lab. Chip 13 4263

    [21]

    Nam J, Lim H, Kim D, Jung H, Shin S 2012 Lab. Chip 12 1347

    [22]

    Lee D J, Brenner H, Youn J R, Song Y S 2013 Sci. Rep. 3 3258

    [23]

    Yang S, Kim J Y, Lee S J, Lee S S, Kim J M 2011 Lab. Chip 11 266

    [24]

    James D F 1966 Nature 212 754

    [25]

    Merrington A C 1943 Nature 152 663

    [26]

    Weissenberg K 1947 Nature 159 310

    [27]

    James D F 2009 Annu. Rev. Fluid Mech. 41 129

    [28]

    Yang S, Lee S S, Ahn S W, Kang K, Shim W, Lee G, Hyun K, Kim J M 2012 Soft Matter 8 5011

    [29]

    Won Seo K, Ran H Y, Joon L S 2014 Appl. Phys. Lett. 104 213702

    [30]

    Tehrani M A 1996 J. Rheol. 40 1057

    [31]

    D’Avino G, Romeo G, Villone M M, Greco F, Netti P A, Maffettone P L 2012 Lab. Chip 12 1638

    [32]

    Sun D K, Xiang N, Chen K, Ni Z H 2013 Acta Phys. Sin. 62 24703 (in Chinese) [孙东科, 项楠, 陈科, 倪中华 2013 62 24703]

    [33]

    Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H 2013 Chin. Phys. B 22 114704

    [34]

    Kang A, Ahn S, Lee S, Lee B, Lee S, Kim J 2011 Korea-Aust. Rheol. J: 23 247

    [35]

    Segre G, Silberberg A 1961 Nature 189 209

    [36]

    Xiang N, Yi H, Chen K, Sun D, Jiang D, Dai Q, Ni Z H 2013 Biomicrofluidics 7 44116

    [37]

    Di C D, Irimia D, Tompkins R G, Toner M 2007 Proc. Natl. Acad. Sci. U. S. A 104 18892

    [38]

    Asmolov E S 1999 J. Fluid Mech. 381 63

    [39]

    Seo K W, Byeon H J, Huh H K, Lee S J 2014 RSC Adv. 4 3512

  • [1] 张婧祺, 郝奇, 吕国建, 熊必金, 乔吉超. 基于微观结构非均匀性理解非晶态聚苯乙烯的应力松弛行为.  , 2024, 73(3): 037601. doi: 10.7498/aps.73.20231240
    [2] 李佳芮, 乐陶然, 尉昊赟, 李岩. 基于脉冲受激布里渊散射光谱的非接触式黏弹性测量.  , 2024, 73(12): 127801. doi: 10.7498/aps.73.20231974
    [3] 郑所生, 黄瑶, 邹鲲, 彭倚天. 刮膜蒸发器内非牛顿流体流场特性数值模拟.  , 2022, 71(5): 054701. doi: 10.7498/aps.71.20211921
    [4] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟.  , 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [5] 郑所生, 黄瑶, 邹鲲, 彭倚天. 刮膜蒸发器内非牛顿流体流场特性数值模拟.  , 2021, (): . doi: 10.7498/aps.70.20211921
    [6] 王行政, 杨晨静, 蔡历恒, 陈东. 基于香蕉形液晶分子自组装的纳米螺旋丝有机凝胶及其流变特性.  , 2020, 69(8): 086102. doi: 10.7498/aps.69.20200332
    [7] 沈学峰, 曹宇, 王军锋, 刘海龙. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究.  , 2020, 69(6): 064702. doi: 10.7498/aps.69.20191682
    [8] 汪杨, 赵伶玲. 单原子Lennard-Jones体黏弹性弛豫时间.  , 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [9] 许福, 李科锋, 邓旭辉, 张平, 龙志林. 基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究.  , 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [10] 廖光开, 龙志林, 许福, 刘为, 张志洋, 杨妙. 基于分数阶流变模型的铁基块体非晶合金黏弹性行为研究.  , 2015, 64(13): 136101. doi: 10.7498/aps.64.136101
    [11] 许少锋, 汪久根. 微通道中高分子溶液Poiseuille流的耗散粒子动力学模拟.  , 2013, 62(12): 124701. doi: 10.7498/aps.62.124701
    [12] 杨斌鑫, 欧阳洁. 黏弹性熔体充模流动诱导残余应力模拟.  , 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [13] 熊毅, 张向军, 张晓昊, 温诗铸. 电场作用下5CB液晶分子的近壁面层黏弹性的QCM研究.  , 2010, 59(11): 7998-8004. doi: 10.7498/aps.59.7998
    [14] 王羽, 欧阳洁, 杨斌鑫. 分数阶Oldroyd-B黏弹性Poiseuille流的Laplace数值反演分析.  , 2010, 59(10): 6757-6763. doi: 10.7498/aps.59.6757
    [15] 张红平, 欧阳洁, 阮春蕾. 纤维悬浮聚合物熔体描述的均一结构多尺度模型.  , 2009, 58(1): 619-630. doi: 10.7498/aps.58.619
    [16] 郭永存, 曾亿山, 卢德唐. 地层静温预测的非牛顿流体数学模型.  , 2005, 54(2): 802-806. doi: 10.7498/aps.54.802
    [17] 杜启振. 各向异性黏弹性介质伪谱法波场模拟.  , 2004, 53(12): 4428-4434. doi: 10.7498/aps.53.4428
    [18] 杜启振, 杨慧珠. 裂缝性地层黏弹性地震多波波动方程.  , 2004, 53(8): 2801-2806. doi: 10.7498/aps.53.2801
    [19] 杜启振, 杨慧珠. 方位各向异性黏弹性介质波场有限元模拟.  , 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
    [20] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究.  , 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
计量
  • 文章访问数:  5882
  • PDF下载量:  1910
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-13
  • 修回日期:  2015-01-29
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map