搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻璃-橡胶混合颗粒的力学响应研究

陈琼 王青花 赵闯 张祺 厚美瑛

引用本文:
Citation:

玻璃-橡胶混合颗粒的力学响应研究

陈琼, 王青花, 赵闯, 张祺, 厚美瑛

Mechanical response study of glass-rubber particle mixtures

Chen Qiong, Wang Qing-Hua, Zhao Chuang, Zhang Qi, Hou Mei-Ying
PDF
导出引用
  • 通过直剪实验和离散元模拟, 研究掺杂了橡胶软球的玻璃体系的力学响应. 改变颗粒固体中橡胶颗粒的含量, 研究体系剪切强度以及剪胀变化等特性, 发现随着橡胶颗粒的增加, 会出现剪胀到剪缩的相转变现象, 且混合颗粒固体的弹性有了很大的提高. 实验研究发现, 随着体系中橡胶颗粒含量的增加, 剪切屈服强度值逐渐减小, 体积发生从剪胀到剪缩的相转变现象, 但临界剪切强度在一定橡胶颗粒含量范围内保持一致; 实验所采取的剪切速率下, 应力应变曲线能较好重合, 即实验处于率无关区域; 混合样品的屈服强度值随正压力的增大而增大. 离散元模拟也得到了上述结果, 另外模拟还发现, 随着橡胶颗粒含量的增加, 颗粒的平均配位数增大; 橡胶颗粒含量和正压力对剪胀-剪缩相转变的位置有影响, 橡胶颗粒含量较小时, 在较大的正压力下易发生相转变现象, 且剪胀-剪缩相转变点对应的平均配位数在5.6-5.9之间; 在橡胶颗粒含量小于30%时, 混合颗粒样品的残剪强度与不掺杂的颗粒体系相近; 大于30%时, 残剪强度随橡胶颗粒含量的增加而减小; 残剪强度随正压力加大而增加.
    Mechanical response of mixtures composed of glass and rubber particles are investigated in direct shear experiments in laboratory and by means of discrete element method simulations. The mixtures are prepared with different contents of rubber fractions. It is found that, with increasing rubber particles, volume phase transition occurs from dilatancy to reduction, and the elastic properties of the mixtures are improved. Experimental results show that, as the rubber particles (up to 30% in volume) are added, the value of the shear stress falls, and the volume phase transition occurs, but the critical states are the same. The shear stress is independent of shear rates, however, it grows with the normal force. We have obtained the consistent results in the simulation. Furthermore, statistical analysis of the simulation results shows that the average coordination number is raised with the increase of rubber particles. Volume phase transition occurs at low rubber fraction when the normal force is large. It is very important to keep in mind that the average coordination number is always between 5.6 and 5.9 at the phase transition points even under different normal forces. When the rubber fraction is less than 30%, the residual shear strength is nearly the same as in the system of glass beads. However, the residual shear strength decreases when the rubber particles increase to the fraction larger than 30%. Meanwhile, the residual shear strength increases with the normal pressure.
    • 基金项目: 国家自然科学基金重点项目(批准号: 11034010)、国家自然科学基金(批准号: 11274354, 11474326, 11264006)、地震行业科研经费(批准号: 201208011)和中国科学院空间科学战略性先导科技专项(批准号: XDA04020200)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11034010), the National Natural Science Foundation of China (Grant Nos. 11274354, 11474326, 11264006), the Special Fund for Earthquake Research of China (Grant No. 201208011), and the “Strategic Priority Research Program-SJ-10” of the Chinese Academy of Sciences (Grant No. XDA04020200).
    [1]

    Sun Q C, Wang G Q 2009 Introduction to Granular Material Mechanics (Beijing: Science Press) p73 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论(北京: 科学出版社) 第73页]

    [2]

    Specht L P, Khatchatourian O, Brito L A T, Ceratti J A P 2007 Materials Research 10 69

    [3]

    Zornberg J G, Cabral A R, Virajandr C 2004 Canadian Geotichnical Journal 41 227

    [4]

    Valdes J R, Evans T M 2008 Canadian Geotechnical Jouirnal 45 588

    [5]

    Feng Z Y, Sutter K G 2000 Geotechnical Testing Journal 23 338

    [6]

    Lee Changho, Truong Q H, Lee W, Lee J S 2010 Journal of Materials in Civil Engineering 22 323

    [7]

    Lee J S, Dodds J, Santamarina J C 2007 Journal of Materials in Civil Engineering 19 197

    [8]

    Kim H K, Santamarina J C 2008 Canadian Geotechnical Jouirnal 45 1457

    [9]

    Lee C, Shin H, Lee J S 2014 International Journal for Numerical and Analytical Methods in Geomechanics 38 1651

    [10]

    Khidas Y, Jia X 2012 Physical Review E 85 051302

    [11]

    Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 Physical Review E 85 031306

    [12]

    Zhang Q 2012 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese) [张祺 2012 博士学位论文(武汉: 武汉大学)]

    [13]

    Zhang Q, Li Y C, Liu R, Jiang Y M, Hou M Y 2012 Acta Phys. Sin. 61 234501 (in Chinese) [张祺, 厚美瑛 2012 61 234501]

    [14]

    Sezer A, Altun S, Goktepe B A 2011 Soils and Foundations 51 857

    [15]

    Zhang Q, Hou M Y 2012 Acta Phys. Sin. 61 244504 (in Chinese) [张祺, 厚美瑛 2012 61 244504]

    [16]

    Wang J, Gutierrez M 2010 Geotechnique 60 395

    [17]

    Liu H T, Cheng X H 2009 Rock and Soil Mechanics 30 287 (in Chinese) [刘海涛, 程晓辉 2009 岩土力学 30 287]

    [18]

    Brujić J, Wang P, Song C M, Johnson D, Sindt O, Makse H 2005 Physical Review Letters 95 128001

    [19]

    Luding S 2008 Granular Matter 10 235

    [20]

    Luding S 2004 International Journal of Solids and Structures 41 5821

    [21]

    Luding S 2005 Journal of the Mechanics and Physics of Solids 53 455

    [22]

    Luding S 2005 Powder Technology 158 45

    [23]

    Zhao C, Hou M Y, Hu L 2014 Chinese Journal of Computational Mechanics 31 179 (in Chinese) [赵闯, 厚美瑛, 胡林 2014 计算力学学报 31 179]

  • [1]

    Sun Q C, Wang G Q 2009 Introduction to Granular Material Mechanics (Beijing: Science Press) p73 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论(北京: 科学出版社) 第73页]

    [2]

    Specht L P, Khatchatourian O, Brito L A T, Ceratti J A P 2007 Materials Research 10 69

    [3]

    Zornberg J G, Cabral A R, Virajandr C 2004 Canadian Geotichnical Journal 41 227

    [4]

    Valdes J R, Evans T M 2008 Canadian Geotechnical Jouirnal 45 588

    [5]

    Feng Z Y, Sutter K G 2000 Geotechnical Testing Journal 23 338

    [6]

    Lee Changho, Truong Q H, Lee W, Lee J S 2010 Journal of Materials in Civil Engineering 22 323

    [7]

    Lee J S, Dodds J, Santamarina J C 2007 Journal of Materials in Civil Engineering 19 197

    [8]

    Kim H K, Santamarina J C 2008 Canadian Geotechnical Jouirnal 45 1457

    [9]

    Lee C, Shin H, Lee J S 2014 International Journal for Numerical and Analytical Methods in Geomechanics 38 1651

    [10]

    Khidas Y, Jia X 2012 Physical Review E 85 051302

    [11]

    Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 Physical Review E 85 031306

    [12]

    Zhang Q 2012 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese) [张祺 2012 博士学位论文(武汉: 武汉大学)]

    [13]

    Zhang Q, Li Y C, Liu R, Jiang Y M, Hou M Y 2012 Acta Phys. Sin. 61 234501 (in Chinese) [张祺, 厚美瑛 2012 61 234501]

    [14]

    Sezer A, Altun S, Goktepe B A 2011 Soils and Foundations 51 857

    [15]

    Zhang Q, Hou M Y 2012 Acta Phys. Sin. 61 244504 (in Chinese) [张祺, 厚美瑛 2012 61 244504]

    [16]

    Wang J, Gutierrez M 2010 Geotechnique 60 395

    [17]

    Liu H T, Cheng X H 2009 Rock and Soil Mechanics 30 287 (in Chinese) [刘海涛, 程晓辉 2009 岩土力学 30 287]

    [18]

    Brujić J, Wang P, Song C M, Johnson D, Sindt O, Makse H 2005 Physical Review Letters 95 128001

    [19]

    Luding S 2008 Granular Matter 10 235

    [20]

    Luding S 2004 International Journal of Solids and Structures 41 5821

    [21]

    Luding S 2005 Journal of the Mechanics and Physics of Solids 53 455

    [22]

    Luding S 2005 Powder Technology 158 45

    [23]

    Zhao C, Hou M Y, Hu L 2014 Chinese Journal of Computational Mechanics 31 179 (in Chinese) [赵闯, 厚美瑛, 胡林 2014 计算力学学报 31 179]

  • [1] 成浩, 韩培锋, 苏有文. 基于离散元方法的松散体滑动堆积特性 及影响因素分析.  , 2020, 69(16): 164501. doi: 10.7498/aps.69.20200223
    [2] 王嗣强, 季顺迎. 椭球颗粒材料在水平转筒内混合特性的超二次曲面离散元分析.  , 2019, 68(23): 234501. doi: 10.7498/aps.68.20191071
    [3] 赵子渊, 李昱君, 王富帅, 张祺, 厚美瑛, 李文辉, 马钢. 玻璃-橡胶混合颗粒体系的弹性行为研究.  , 2018, 67(10): 104502. doi: 10.7498/aps.67.20172772
    [4] 韩燕龙, 贾富国, 曾勇, 王爱芳. 受碾区域内颗粒轴向流动特性的离散元模拟.  , 2015, 64(23): 234502. doi: 10.7498/aps.64.234502
    [5] 李树忱, 平洋, 李术才, 寇强, 马腾飞, 冯丙阳. 基于流形覆盖的岩体宏细观破裂的颗粒离散元法.  , 2014, 63(5): 050202. doi: 10.7498/aps.63.050202
    [6] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究.  , 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [7] 韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强. 颗粒滚动摩擦系数对堆积特性的影响.  , 2014, 63(17): 174501. doi: 10.7498/aps.63.174501
    [8] 孟凡净, 刘焜. 密集剪切颗粒流中速度波动和自扩散特性的离散元模拟.  , 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [9] 黄德财, 冯耀东, 解为梅, 陆明, 吴海平, 胡凤兰, 邓开明. 颗粒密度对旋转筒内二元颗粒体系分离的影响.  , 2012, 61(12): 124501. doi: 10.7498/aps.61.124501
    [10] 张祺, 厚美瑛. 直剪颗粒体系的尺寸效应研究.  , 2012, 61(24): 244504. doi: 10.7498/aps.61.244504
    [11] 王海华, 孙贤明. 两种按比例混合颗粒系的多次散射模拟.  , 2012, 61(15): 154204. doi: 10.7498/aps.61.154204
    [12] 张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛. 直剪颗粒体系声波探测.  , 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [13] 高红利, 陈友川, 赵永志, 郑津洋. 薄滚筒内二元湿颗粒体系混合行为的离散单元模拟研究.  , 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [14] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究.  , 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [15] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 颗粒离散元模拟中的阻尼系数标定.  , 2009, 58(8): 5155-5161. doi: 10.7498/aps.58.5155
    [16] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究.  , 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [17] 宜晨虹, 慕青松, 苗天德. 重力作用下颗粒介质应力链的离散元模拟.  , 2009, 58(11): 7750-7755. doi: 10.7498/aps.58.7750
    [18] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟.  , 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [19] 张权义, 彭 政, 何 润, 刘 锐, 陆坤权, 厚美瑛. 运动物体在颗粒介质中的阻力形式.  , 2007, 56(8): 4708-4712. doi: 10.7498/aps.56.4708
    [20] 张权义, 吴耀宇, 彭 政, 刘 锐, 陆坤权, 厚美瑛. 重力驱动下运动物体在颗粒介质中的最大穿透深度.  , 2006, 55(12): 6203-6207. doi: 10.7498/aps.55.6203
计量
  • 文章访问数:  5608
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-06
  • 修回日期:  2015-02-27
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map