搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(1+2)维各向同性介质中的旋转椭圆空间光孤子

余亚东 梁果 任占梅 郭旗

引用本文:
Citation:

(1+2)维各向同性介质中的旋转椭圆空间光孤子

余亚东, 梁果, 任占梅, 郭旗

(1+2) dimensional spiraling elliptic spatial optical solitons in the media without anisotropy

Yu Ya-Dong, Liang Guo, Ren Zhan-Mei, Guo Qi
PDF
导出引用
  • 从(1+2)维非局域非线性薛定谔方程出发, 通过坐标变换得到了旋转坐标系下的非局域非线性薛定谔方程. 假设响应函数为高斯型, 用虚时间法数值求解了旋转坐标系下的非局域非线性薛定谔方程的静态孤子解, 迭代出了不同非局域程度条件下的静态椭圆孤子数值解. 最后采用分步傅里叶算法, 以迭代的孤子解作为初始输入波形, 模拟了在不同的非局域程度条件下, (1+2)维椭圆空间光孤子的旋转传输特性. 强非局域时, 椭圆光孤子的长轴方向和短轴方向波形都是高斯型, 其他的非局域程度下, 不是高斯型. 由此表明:(1+2)维椭圆光孤子对非局域程度依赖性很强. 旋转角速度和功率均与非局域程度以及孤子的椭圆度有关.
    Starting from the nonlocal nonlinear Schrödinger equation in Cartesian coordinates, we also obtained nonlocal nonlinear Schrödinger equation in a rotating coordinate system.Assuming that the response function of media is Gaussian, we obtain the stable solutions of the solitons of nonlocal nonlinear Schrödinger equation in rotating coordinate system by means ot the imaginary-time evolution method. The propagation properties of the (1+2) dimensional spiraling elliptic spatial optical solitons in the media is discussed in different degrees of the nonlocality by using the split-step Fourier algorithm.The elliptic soliton profiles of the major and the minor axes are Gaussian shaped in a strongly nonlocal case, but not in a weakly nonlocal case. It is suggested that (1+2) dimensional elliptic solitons be highly dependent on the degree of nonlocality. The angular velocity for the change of the ellipticity is very sensitive when the nonlocality is strong,but in the weakly nonlocal case, the change of the angular velocity is very small.The angular velocity depends strongly on weakly nonlocal case to different degrees of ellipticity. Oppositely, in strongly nonlocal case, the value of the angular velocity is almost unchanged. In another way, the critical power for the solitons decreases as the nonlocality decreases in different degrees of ellipticity.Similarly,the critical power for the solitons decreases as the ellipticity decreases in different degrees of nonlocality.
    • 基金项目: 国家自然科学基金(批准号: 11274125, 11474109)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274125, 11474109).
    [1]

    Eugenieva E D, Christodoulides D N 2000 Opt.Lett. 25 972

    [2]

    Shen M, Wang Q, Shi J L 2007 Opt. Lett. 270 384

    [3]

    Krolikowski W, Bang O, Wyller J 2004 Phys. Rev. E 70 036617

    [4]

    Katz O, Carmon T, Schwartz T, Segev M, Christotoulides D N 2004 Opt. Lett. 29 1248

    [5]

    Ciattoni A, Palma C 2003 J. Opt. Soc. Am. 20 2163

    [6]

    Polyakov S V, Stegeman G I 2002 Phys. Rev. E 66 046622

    [7]

    Qin X J, Guo Q, Hu W, Lan S 2006 Acta Phys. Sin. 55 1237 (in Chinese) [秦晓娟, 郭旗, 胡巍, 兰胜 2006 55 1237]

    [8]

    Rotschild C, Cohen O, Manela O, Segev M 2005 Phys.Rev.Lett. 95 213904

    [9]

    Zhang P, Zhao J L, Xiao F J, Lou C B, Xu J J, Chen Z G 2008 Opt.Express. 16 3865

    [10]

    Crosignani B, Porto P D 1993 Opt.Lett. 18 1394

    [11]

    Fibich G, Papnicolaou G 1999 SIAM J.Appl.Math. 60 183

    [12]

    Krolikowski W, Bang O, Nikolov N I, Neshev D, Wyller J, Rasmussen J J, Edmundson D 2004 J.Opt.B-Quantum S.O. 6 S288

    [13]

    Lopez A S, Desyatnikov A S, Kivshar S Y, Skupin S, Krolikowski W, Bang O 2006 Opt.Lett. 31 1100

    [14]

    Buccoliero D, Lopez A S, Skupin S, Desyatnikov A S, Bang O, Krolikowski W, Kivshar Y S 2007 Physica.B. 394 351

    [15]

    Briedis D, Petersen D E, Edmundson D, Krolikowski W, Bang O 2005 Opt.Express. 73 435

    [16]

    Liang G, Guo Q 2013 Phys. Rev. A 88 043825

    [17]

    Mitchell D J, Snyder A W 1999 J.Opt.Soc.Am.B 16 236

    [18]

    Krolikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys.Rev.E 64 016612

    [19]

    Guo Q, Chi S 2000 J.Opt.A:Pure Appl.Opt. 2 5

    [20]

    Yang J K, Lakoba T L 2008 Stud.Appl.Math. 120 265

    [21]

    Chiofalo M L, Succi S, Tosi M P 2000 Phys.Rev.E 62 7438

    [22]

    Carr L D, Castin Y 2002 Phys.Rev.A 66 063602

    [23]

    Cao J N, Guo Q 2005 Acta Phys.Sin. 54 3688 (in Chinese) [曹觉能, 郭旗 2005 54 3688]

  • [1]

    Eugenieva E D, Christodoulides D N 2000 Opt.Lett. 25 972

    [2]

    Shen M, Wang Q, Shi J L 2007 Opt. Lett. 270 384

    [3]

    Krolikowski W, Bang O, Wyller J 2004 Phys. Rev. E 70 036617

    [4]

    Katz O, Carmon T, Schwartz T, Segev M, Christotoulides D N 2004 Opt. Lett. 29 1248

    [5]

    Ciattoni A, Palma C 2003 J. Opt. Soc. Am. 20 2163

    [6]

    Polyakov S V, Stegeman G I 2002 Phys. Rev. E 66 046622

    [7]

    Qin X J, Guo Q, Hu W, Lan S 2006 Acta Phys. Sin. 55 1237 (in Chinese) [秦晓娟, 郭旗, 胡巍, 兰胜 2006 55 1237]

    [8]

    Rotschild C, Cohen O, Manela O, Segev M 2005 Phys.Rev.Lett. 95 213904

    [9]

    Zhang P, Zhao J L, Xiao F J, Lou C B, Xu J J, Chen Z G 2008 Opt.Express. 16 3865

    [10]

    Crosignani B, Porto P D 1993 Opt.Lett. 18 1394

    [11]

    Fibich G, Papnicolaou G 1999 SIAM J.Appl.Math. 60 183

    [12]

    Krolikowski W, Bang O, Nikolov N I, Neshev D, Wyller J, Rasmussen J J, Edmundson D 2004 J.Opt.B-Quantum S.O. 6 S288

    [13]

    Lopez A S, Desyatnikov A S, Kivshar S Y, Skupin S, Krolikowski W, Bang O 2006 Opt.Lett. 31 1100

    [14]

    Buccoliero D, Lopez A S, Skupin S, Desyatnikov A S, Bang O, Krolikowski W, Kivshar Y S 2007 Physica.B. 394 351

    [15]

    Briedis D, Petersen D E, Edmundson D, Krolikowski W, Bang O 2005 Opt.Express. 73 435

    [16]

    Liang G, Guo Q 2013 Phys. Rev. A 88 043825

    [17]

    Mitchell D J, Snyder A W 1999 J.Opt.Soc.Am.B 16 236

    [18]

    Krolikowski W, Bang O, Rasmussen J J, Wyller J 2001 Phys.Rev.E 64 016612

    [19]

    Guo Q, Chi S 2000 J.Opt.A:Pure Appl.Opt. 2 5

    [20]

    Yang J K, Lakoba T L 2008 Stud.Appl.Math. 120 265

    [21]

    Chiofalo M L, Succi S, Tosi M P 2000 Phys.Rev.E 62 7438

    [22]

    Carr L D, Castin Y 2002 Phys.Rev.A 66 063602

    [23]

    Cao J N, Guo Q 2005 Acta Phys.Sin. 54 3688 (in Chinese) [曹觉能, 郭旗 2005 54 3688]

  • [1] 温嘉美, 薄文博, 温学坤, 戴朝卿. 耦合饱和非线性薛定谔方程的多极矢量孤子.  , 2023, 72(10): 100502. doi: 10.7498/aps.72.20222284
    [2] 饶继光, 陈生安, 吴昭君, 贺劲松. 空间位移$\mathcal{PT}$对称非局域非线性薛定谔方程的高阶怪波解.  , 2023, 72(10): 104204. doi: 10.7498/aps.72.20222298
    [3] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法.  , 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [4] 欧阳世根. 自散焦非局域非线性材料中的光学涡旋孤子.  , 2013, 62(4): 040504. doi: 10.7498/aps.62.040504
    [5] 宋诗艳, 王晶, 王建步, 宋莎莎, 孟俊敏. 应用非线性薛定谔方程模拟深海内波的传播.  , 2010, 59(9): 6339-6344. doi: 10.7498/aps.59.6339
    [6] 郑亚建, 宣文涛, 陆大全, 欧阳世根, 胡巍, 郭旗. 功率控制的强非局域空间光孤子短程相互作用.  , 2010, 59(2): 1075-1081. doi: 10.7498/aps.59.1075
    [7] 宋诗艳, 王晶, 孟俊敏, 王建步, 扈培信. 深海内波非线性薛定谔方程的研究.  , 2010, 59(2): 1123-1129. doi: 10.7498/aps.59.1123
    [8] 郑睿, 高星辉, 曹伟文, 陈利霞, 陆大全, 郭旗, 吴立军, 胡巍. 光谱重置法在非局域空间光孤子研究中的应用.  , 2010, 59(2): 1063-1068. doi: 10.7498/aps.59.1063
    [9] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播.  , 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [10] 戴继慧, 郭旗. 强非局域非线性介质中的旋转涡旋光孤子.  , 2009, 58(3): 1752-1757. doi: 10.7498/aps.58.1752
    [11] 朱叶青, 龙学文, 胡 巍, 曹龙贵, 杨平保, 郭 旗. 非局域程度对向列相液晶中空间光孤子的影响.  , 2008, 57(4): 2260-2265. doi: 10.7498/aps.57.2260
    [12] 程雪苹, 林 机, 王志平. 微扰的耦合非线性薛定谔方程的近似求解.  , 2007, 56(6): 3031-3038. doi: 10.7498/aps.56.3031
    [13] 秦晓娟, 郭 旗, 胡 巍, 兰 胜. 椭圆强非局域空间光孤子.  , 2006, 55(3): 1237-1243. doi: 10.7498/aps.55.1237
    [14] 龚伦训. 非线性薛定谔方程的Jacobi椭圆函数解.  , 2006, 55(9): 4414-4419. doi: 10.7498/aps.55.4414
    [15] 阮航宇, 李慧军. 用推广的李群约化法求解非线性薛定谔方程.  , 2005, 54(3): 996-1001. doi: 10.7498/aps.54.996
    [16] 肖 毅, 郭 旗. 平板波导中正交极化的双光束的“互陷”传输.  , 2005, 54(11): 5201-5209. doi: 10.7498/aps.54.5201
    [17] 王形华, 郭 旗. 椭圆高斯光束在强非局域非线性介质中的传输特性.  , 2005, 54(7): 3183-3188. doi: 10.7498/aps.54.3183
    [18] 曹觉能, 郭 旗. 不同非局域程度条件下空间光孤子的传输特性.  , 2005, 54(8): 3688-3693. doi: 10.7498/aps.54.3688
    [19] 阮航宇, 陈一新. (2+1)维非线性薛定谔方程的环孤子,dromion,呼吸子和瞬子.  , 2001, 50(4): 586-592. doi: 10.7498/aps.50.586
    [20] 汪定雄. 黑洞自转角速度的演化特征.  , 1999, 48(8): 1556-1557. doi: 10.7498/aps.48.1556
计量
  • 文章访问数:  6041
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-27
  • 修回日期:  2015-02-13
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map