搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PM2.5大气污染对自由空间量子通信性能的影响

聂敏 任杰 杨光 张美玲 裴昌幸

引用本文:
Citation:

PM2.5大气污染对自由空间量子通信性能的影响

聂敏, 任杰, 杨光, 张美玲, 裴昌幸

Influences of PM2.5 atmospheric pollution on the performance of free space quantum communication

Nie Min, Ren Jie, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing
PDF
导出引用
  • 近年来, PM2.5大气污染日益严重, 不仅影响空气质量与大气能见度, 而且还会对自由空间量子光信号的传输造成影响. 然而, 有关PM2.5与自由空间量子通信信道参数关系的研究, 迄今尚未展开. 本文根据PM2.5粒度谱分布函数及其化学成分的消光份额, 提出了PM2.5指数、大气湿度与自由空间量子信道衰减的关系; 针对幅值阻尼信道和退极化信道, 分别建立了PM2.5污染程度与信道容量、信道平均保真度、信道误码率的定量关系. 仿真结果表明, 当大气湿度为30%, PM2.5指数分别为50和300时, 自由空间量子通信信道容量、信道平均保真度、信道误码率分别依次为0.83和0.21, 0.91和0.56, 0.0048和0.0192. 由此可见, PM2.5污染程度对自由空间量子通信性能有显著的影响. 因此, 为了提高自由空间量子通信的可靠性, 应根据PM2.5大气污染状况, 自适应调整系统的各项参数.
    In recent years, the PM2.5 air pollution has been increasingly serious, which not only affects the air quality and visibility, but also has effects on free space optical signal transmission. However, the research about the relationship between the PM2.5 air pollution and the free space quantum communication has not yet been started. To investigate this relationship, the PM2.5 distribution function and its chemical extinction should be analyzed first. According to the degree of PM2.5 atmospheric pollution and the humidity of the atmosphere, the relationships among the PM2.5 index, the humidity of the atmosphere and the channel attenuation of the free space quantum communication can then be established. According to the amplitude damping channel and the depolarizing channel, the effects of the degree of PM2.5 air pollution on channel capacity, channel average fidelity, channel bit error rate are put out and simulated finally. Simulation results show that, if the air humidity is 30% and the PM2.5 index is 50, the channel capacity, channel average fidelity and the channel bit error rate of free space quantum communication will be 0.83, 0.91 and 0.0048 respectively. While the air humidity is 30% and the PM2.5 index is 300, the above channel parameters will be respectively 0.21, 0.56 and 0.0192. Further more, the channel average fidelity has an obvious difference between the two kinds of channel, and it is also related to the probability of the value of the source characters. Thus, the degree of PM2.5 air pollution has a significant effect on the performance of free space quantum communication. And, in order to improve the reliability of quantum communication in free space, the parameters should be adjusted adaptively based on the status of PM2.5 air pollution.
    • 基金项目: 国家自然科学基金(批准号: 61172071, 61201194)和陕西省自然科学基础研究计划(批准号: 2014JQ8318)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172071, 61201194), and the Natural Science Research Foundation of Shaanxi Province, China (Grant No. 2014JQ8318).
    [1]

    Huang R J, Zhang Y L, Bozzetti C, Ho K F, Cao J J, Zotter P, Canonaco F, Wolf R, Crippa M, Baltensperger U, Zimmermann R, Szidat S, Haddad I E 2014 Nature 514 218

    [2]

    Deng X, Wu D, Yu J, Lau A K, Li F, Tan H, Yuan Z, Ng W M, Deng T, Wu C, Zhou X 2013 Journal of the Air & Waste Management Association 63 1012

    [3]

    Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185

    [4]

    Ma X S, Thomas H, Thomas S, Wang D Q, Sebastian K, William Nr, Bernhard W, Alexandra M, Johannes K, Elena A, Vadim M, Thomas J, Rupert U, Anton Z 2012 Nature 489 269

    [5]

    Yin J, Cao Y, Yong H L, Ren J G, Liang H, Liao S K, Zhou F, Liu C, Wu Y P, Pan G S, Li L, Liu N L, Zhang Q, Peng C Z, Pan J W 2013 Phys. Rev. Lett. 110 260407

    [6]

    David E B, Thomas M B, Mohsen R, Almut B 2014 Phys. Rev. A 90 032306

    [7]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 63 240303]

    [8]

    Liu X C, Gao T C, Qin J, Liu L 2010 Acta Phys. Sin. 59 2156 (in Chinese) [刘西川, 高太长, 秦健, 刘磊 2010 59 2156]

    [9]

    Sun X M, Han Y P 2006 Acta Phys. Sin. 55 682 (in Chinese) [孙贤明, 韩一平 2006 55 682]

    [10]

    He Q S, Zhou Y H, Zheng X J 2005 Science in China(Series G:Physics,Mechanics & Astronomy) 35 308 (in Chinese) [何琴淑周又和郑晓静 2005 中国科学G辑:物理学、力学、天文学 35 308]

    [11]

    Yao Q, Han S Q, Bi X H 2012 China Environmental Science 32 214 (in Chinese) [姚青韩素芹毕晓辉 2012 中国环境科学 32 214]

    [12]

    Min X, Li X C, Li X W, Ma X 2015 Acta Optica Sinica 35 413 (in Chinese) [闵星, 李兴财, 李新碗, 马鑫 2015 光学学报 35 413]

    [13]

    Cai J, Gao J, Fan Z G, Feng S, Fang J 2013 Chin. J. Lumin. 34 639 (in Chinese) [蔡嘉, 高隽, 范之国, 冯屾, 方静 2013 发光学报 34 639]

    [14]

    Marco L(translated by Zhou W X, Wu M Y, Hu M C, Jin L) 2013 Quantum Radar (Beijing:Publishing House Of Electronics Industry) p15-17 (in Chinese) [马尔科L著(周万幸, 吴鸣亚, 胡明春, 金林译) 2013 量子雷达(北京: 电子工业出版社)第15-17页]

    [15]

    Yin H, Ma H X 2006 Introduction to quantum communication in military (Beijing: Military Science Press) p49 (in Chinese) [尹浩, 马怀新 2006 军事量子通信概论 (北京:军事科学出版社) 第49页]

    [16]

    Zhang D Y, 2013 Quantum logic gates and quantum decoherence (Beijing: Science Press) pp90-110 (in Chinese) [张登玉 2013 量子逻辑门与量子退相干 (北京: 科学出版社) 第90-110页]

    [17]

    Yin H, HanY 2013 Quantum Communication Theory And Technology (Beijing: Publishing House of Electronics Industry) pp76-83 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第76-83页]

    [18]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [19]

    Nielsen A, Chuang I(translated by Zheng D Z, Zhao Q C) 2005 Quantum Computation and Quantum Information (Vol. 2) (Beijing:TsingHua University Press) pp57-60 (in Chinese))[尼尔森,庄著(郑大钟, 赵千川译) 2005 量子计算和量子信息(二)(北京: 清华大学出版社)第57-60页]

    [20]

    Yan Y, 2009 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese) [阎毅 2009 博士学位论文(西安:西安电子科技大学)]

    [21]

    Yan Y, Pei C X, Han B B, Zhao N 2008 Chin. J. Radio Sci. 23 834 (in Chinese) [闫毅, 裴昌幸, 韩宝彬, 赵楠 2008电波科学学报 23 834]

  • [1]

    Huang R J, Zhang Y L, Bozzetti C, Ho K F, Cao J J, Zotter P, Canonaco F, Wolf R, Crippa M, Baltensperger U, Zimmermann R, Szidat S, Haddad I E 2014 Nature 514 218

    [2]

    Deng X, Wu D, Yu J, Lau A K, Li F, Tan H, Yuan Z, Ng W M, Deng T, Wu C, Zhou X 2013 Journal of the Air & Waste Management Association 63 1012

    [3]

    Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185

    [4]

    Ma X S, Thomas H, Thomas S, Wang D Q, Sebastian K, William Nr, Bernhard W, Alexandra M, Johannes K, Elena A, Vadim M, Thomas J, Rupert U, Anton Z 2012 Nature 489 269

    [5]

    Yin J, Cao Y, Yong H L, Ren J G, Liang H, Liao S K, Zhou F, Liu C, Wu Y P, Pan G S, Li L, Liu N L, Zhang Q, Peng C Z, Pan J W 2013 Phys. Rev. Lett. 110 260407

    [6]

    David E B, Thomas M B, Mohsen R, Almut B 2014 Phys. Rev. A 90 032306

    [7]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 63 240303]

    [8]

    Liu X C, Gao T C, Qin J, Liu L 2010 Acta Phys. Sin. 59 2156 (in Chinese) [刘西川, 高太长, 秦健, 刘磊 2010 59 2156]

    [9]

    Sun X M, Han Y P 2006 Acta Phys. Sin. 55 682 (in Chinese) [孙贤明, 韩一平 2006 55 682]

    [10]

    He Q S, Zhou Y H, Zheng X J 2005 Science in China(Series G:Physics,Mechanics & Astronomy) 35 308 (in Chinese) [何琴淑周又和郑晓静 2005 中国科学G辑:物理学、力学、天文学 35 308]

    [11]

    Yao Q, Han S Q, Bi X H 2012 China Environmental Science 32 214 (in Chinese) [姚青韩素芹毕晓辉 2012 中国环境科学 32 214]

    [12]

    Min X, Li X C, Li X W, Ma X 2015 Acta Optica Sinica 35 413 (in Chinese) [闵星, 李兴财, 李新碗, 马鑫 2015 光学学报 35 413]

    [13]

    Cai J, Gao J, Fan Z G, Feng S, Fang J 2013 Chin. J. Lumin. 34 639 (in Chinese) [蔡嘉, 高隽, 范之国, 冯屾, 方静 2013 发光学报 34 639]

    [14]

    Marco L(translated by Zhou W X, Wu M Y, Hu M C, Jin L) 2013 Quantum Radar (Beijing:Publishing House Of Electronics Industry) p15-17 (in Chinese) [马尔科L著(周万幸, 吴鸣亚, 胡明春, 金林译) 2013 量子雷达(北京: 电子工业出版社)第15-17页]

    [15]

    Yin H, Ma H X 2006 Introduction to quantum communication in military (Beijing: Military Science Press) p49 (in Chinese) [尹浩, 马怀新 2006 军事量子通信概论 (北京:军事科学出版社) 第49页]

    [16]

    Zhang D Y, 2013 Quantum logic gates and quantum decoherence (Beijing: Science Press) pp90-110 (in Chinese) [张登玉 2013 量子逻辑门与量子退相干 (北京: 科学出版社) 第90-110页]

    [17]

    Yin H, HanY 2013 Quantum Communication Theory And Technology (Beijing: Publishing House of Electronics Industry) pp76-83 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第76-83页]

    [18]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [19]

    Nielsen A, Chuang I(translated by Zheng D Z, Zhao Q C) 2005 Quantum Computation and Quantum Information (Vol. 2) (Beijing:TsingHua University Press) pp57-60 (in Chinese))[尼尔森,庄著(郑大钟, 赵千川译) 2005 量子计算和量子信息(二)(北京: 清华大学出版社)第57-60页]

    [20]

    Yan Y, 2009 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese) [阎毅 2009 博士学位论文(西安:西安电子科技大学)]

    [21]

    Yan Y, Pei C X, Han B B, Zhao N 2008 Chin. J. Radio Sci. 23 834 (in Chinese) [闫毅, 裴昌幸, 韩宝彬, 赵楠 2008电波科学学报 23 834]

  • [1] 董曜, 纪爱玲, 张国锋. 关联退极化量子信道中qutrit-qutrit系统的量子相干性演化.  , 2022, 71(7): 070303. doi: 10.7498/aps.71.20212067
    [2] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究.  , 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [3] 聂敏, 王超旭, 杨光, 张美玲, 孙爱晶, 裴昌幸. 降雪对地表附近自由空间量子信道的影响及参数仿真.  , 2021, 70(3): 030301. doi: 10.7498/aps.70.20200972
    [4] 张霞萍. 自由空间中时空复变量自减速艾里拉盖尔高斯光束的相互作用.  , 2020, 69(2): 024204. doi: 10.7498/aps.69.20191272
    [5] 聂敏, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于袋鼠纠缠跳跃模型的量子状态自适应跳变通信策略.  , 2019, 68(11): 110301. doi: 10.7498/aps.68.20190163
    [6] 卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略.  , 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [7] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信.  , 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [8] 聂敏, 任家明, 杨光, 张美玲, 裴昌幸. 非球形气溶胶粒子及大气相对湿度对自由空间量子通信性能的影响.  , 2016, 65(19): 190301. doi: 10.7498/aps.65.190301
    [9] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理.  , 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [10] 张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄. 非均匀部分相干光束在自由空间中的传输.  , 2015, 64(3): 034205. doi: 10.7498/aps.64.034205
    [11] 丁世敬, 黄刘宏, 李跃波, 薛凡喜. 基于材料反射率谐振特性测试电磁参数的自由空间法.  , 2012, 61(22): 220601. doi: 10.7498/aps.61.220601
    [12] 罗亚梅, 吕百达, 唐碧华, 朱渊. 高斯涡旋光束在自由空间传输中电场和磁场的偏振奇点.  , 2012, 61(13): 134202. doi: 10.7498/aps.61.134202
    [13] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构.  , 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [14] 陆大全, 胡巍, 钱列加, 范滇元. 等衍射超短脉冲厄米高斯光束在自由空间中的传输及其时空耦合效应.  , 2009, 58(3): 1655-1661. doi: 10.7498/aps.58.1655
    [15] 肖海林, 欧阳缮, 聂在平. MIMO量子信道的空间自由度研究.  , 2009, 58(6): 3685-3691. doi: 10.7498/aps.58.3685
    [16] 闫红卫, 程 科, 吕百达. 离轴平顶高斯涡旋光束形成的合成光涡旋及其在自由空间中的传输.  , 2008, 57(9): 5542-5549. doi: 10.7498/aps.57.5542
    [17] 王金东, 路 巍, 赵 峰, 刘小宝, 郭邦红, 张 静, 黄宇娴, 路轶群, 刘颂豪. 稳定的低噪声自由空间量子密钥分配实验研究.  , 2008, 57(7): 4214-4218. doi: 10.7498/aps.57.4214
    [18] 王少凯, 任继刚, 金贤敏, 杨 彬, 杨 冬, 彭承志, 蒋 硕, 王向斌. 自由空间量子通讯实验中纠缠源的研制.  , 2008, 57(3): 1356-1359. doi: 10.7498/aps.57.1356
    [19] 陆大全, 胡巍, 杨振军, 郑一周. 单周期以上超短脉冲光束在自由空间中的矢量非傍轴传输方法.  , 2004, 53(4): 1063-1069. doi: 10.7498/aps.53.1063
    [20] 苗二龙, 莫小范, 桂有珍, 韩正甫, 郭光灿. 相位调制自由空间量子密钥分配.  , 2004, 53(7): 2123-2126. doi: 10.7498/aps.53.2123
计量
  • 文章访问数:  7723
  • PDF下载量:  495
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-12
  • 修回日期:  2015-05-06
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map