搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

0.18 m部分耗尽绝缘体上硅互补金属氧化物半导体电路单粒子瞬态特性研究

赵星 梅博 毕津顺 郑中山 高林春 曾传滨 罗家俊 于芳 韩郑生

引用本文:
Citation:

0.18 m部分耗尽绝缘体上硅互补金属氧化物半导体电路单粒子瞬态特性研究

赵星, 梅博, 毕津顺, 郑中山, 高林春, 曾传滨, 罗家俊, 于芳, 韩郑生

Single event transients in a 0.18 m partially-depleted silicon-on-insulator complementary metal oxide semiconductor circuit

Zhao Xing, Mei Bo, Bi Jin-Shun, Zheng Zhong-Shan, Gao Lin-Chun, Zeng Chuan-Bin, Luo Jia-Jun, Yu Fang, Han Zheng-Sheng
PDF
导出引用
  • 利用脉冲激光入射技术研究100级0.18 m部分耗尽绝缘体上硅互补金属氧化物半导体反相器链的单粒子瞬态效应, 分析了激光入射器件类型及入射位置对单粒子瞬态脉冲传输特性的影响. 实验结果表明, 单粒子瞬态脉冲在反相器链中的传输与激光入射位置有关, 当激光入射第100级到第2级的n型金属-氧化物-半导体器件, 得到的脉冲宽度从287.4 ps增加到427.5 ps; 当激光入射第99级到第1级的p型金属-氧化物-半导体器件, 得到的脉冲宽度从150.5 ps增加到295.9 ps. 激光入射点靠近输出则得到的瞬态波形窄; 靠近输入则得到的瞬态波形较宽, 单粒子瞬态脉冲随着反相器链的传输而展宽. 入射器件的类型对单粒子瞬态脉冲展宽无影响. 通过理论分析得到, 部分耗尽绝缘体上硅器件浮体效应导致的阈值电压迟滞是反相器链单粒子瞬态脉冲展宽的主要原因. 而示波器观察到的与预期结果幅值相反的正输出脉冲, 是输出节点电容充放电的结果.
    Single event transients (SETs) in a 100 series 0.18 m partially- depleted silicon-on-insulator (PDSOI) complementary metal oxide semiconductor (CMOS) inverter chain are studied by using pulsed laser. In this paper, effects of struck transistor type and struck locations on the threshold laser energy and the pulse width of SETs are investigated. Results show that the threshold laser energies at different locations are similar, but the threshold laser energies of n-channel metal-oxide-semiconductor (NMOS) transistors are much smaller than that of p-channel metal-oxide-semiconductor (PMOS) transistors. The SET pulse width of n-channel metal-oxide-semiconductor field-effect transistor (NMOSFET) is 427.5 ps as measured at the output terminal when the 2nd stage is irradiated, and 287.4 ps when the 100th stage is irradiated; the SET pulse width of p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET) is 295.9 ps as measured at the output terminal when the 1st stage is irradiated, and 150.5 ps when the 99th stage is irradiated. Both broadening rates are about 1.4 ps/stage. When the struck locations are close to the output terminal of the chain, the SET pulse is narrowed; however, when the struck nodes are close to the input terminal, the SET pulse is broadened. SET pulses are progressively broadened up when propagating is along inverter chains. A similar broadening rate in neither NMOSFET nor PMOSFET, indicates that the SET pulse broadening effect is caused by propagation, independent of the type of struck transistors. Through analysis, the charge of floating body-induced threshold voltage hysteresis in PDSOI transistors is the main cause of pulse broadening. The positive SET pulse observed on the oscilloscope, contrary to the expectation, is due to charging and discharging of the output node capacitor. Also, the observed sub-rail-to-rail swings of the SET pulses are due to the voltage division between the internal resistance of the oscilloscope and the resistance of the PMOS transistor.
    • 基金项目: 国家自然科学基金(批准号:11179003,61176095)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11179003, 61176095).
    [1]

    Bi J S, Liu G, Luo J J, Han Z S 2013 Acta Phys. Sin. 62 208501 (in Chinese) [毕津顺, 刘刚, 罗家俊, 韩郑生 2013 62 208501]

    [2]

    Bi J S, Zeng C B, Gao L C, Liu G, Luo J J, Han Z S 2014 Chin. Phys. B 23 088505

    [3]

    Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501 (in Chinese) [张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 62 048501]

    [4]

    Buchner S, Baze M, Brown D, McMorrow D, Melinger J 1997 IEEE Trans. Nucl. Sci. 44 2209

    [5]

    Mavis D G, Eaton P H 2000 Military and Aerospace Applications of Programmable Devices and Technologies Conference Maryland, USA, September 26-28, 2000 p26

    [6]

    Ladbury R L, Benedetto J, McMorrow D, Buchner S P, Label K A, Berg M D, Kim H S, Sanders A B, Friendlich M R, Phan A 2009 IEEE Trans. Nucl. Sci. 56 3334

    [7]

    Schwank J R, Shaneyfelt M R, McMorrow D, Ferlet-Cavrois V, Dodd P E, Heidel D F, Marshall P W, Pellish J A, Label K A, Rodbell K P, Hakey M, Flores R S, Swanson S E 2010 IEEE Trans. Nucl. Sci. 57 1827

    [8]

    Ferlet-Cavrois V, Paillet P, McMorrow D, Torres A, Gaillardin M, Melinger J S, Knudson A R, Campbell A B, Schwank J R, Vizkelethy G, Shaneyfelt M R, Hirose K, Faynot O, Jahan C, Tosti L 2005 IEEE Trans. Nucl. Sci. 52 2104

    [9]

    Gouker P, Brandt J, Wyatt P, Tyrrell B, Soares A, Knecht J, Keast C, McMorrow D, Narasimhan B, Gadlage M, Bhuva B 2008 IEEE Trans. Nucl. Sci. 55 2854

    [10]

    Richter A K, Arimura I 1987 IEEE Trans. Nucl. Sci. 34 1234

    [11]

    Ferlet-Cavrois V, Massengill L W, Gouker P 2013 IEEE Trans Nucl. Sci. 60 1767

    [12]

    Massengill L W, Tuinenga P W 2008 IEEE Trans. Nucl. Sci. 55 2861

    [13]

    Ferlet-Cavrois V, Paillet P, McMorrow D, Fel N, Baggio J, Girard S, Duhamel O, Melinger J S, Gaillardin M, Schwank J R, Dodd P E, Shaneyfelt M R, Felix J A 2007 IEEE Trans. Nucl. Sci. 54 2338

    [14]

    Ferlet-Cavrois V, Pouget V, McMorrow D, Schwank J R, Fel N, Essely F, Flores R S, Paillet P, Gaillardin M, Kobayashi D, Melinger J S, Duhamel O, Dodd P E, Shaneyfelt M R 2008 IEEE Trans.Nucl. Sci. 55 2842

    [15]

    Gouker P, Brandt J, Wyatt P, Tyrrell B, Soares A, Knecht J, Keast C, McMorrow D, Narasimham B, Gadlage M, Bhuva B 2008 IEEE Trans. Nucl. Sci. 55 2854

    [16]

    Burns J R 1964 RCA Rev. XXV 627

    [17]

    Kayssi A I, Sakallah K A, Burks T M1992 IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 39 42

    [18]

    Casey M C, Amusan O A, Nation S A, Loveless T D, Balasubramanian A, Bhuva B L, Reed R A, McMorrow D, Weller R A, Alles M L, Massengill L W, Melinger J S, Narasimham B 2008 IEEE Trans. Nucl. Sci. 55 3342

    [19]

    Wirth G, Kastensmidt F L, Ribeiro I 2008 IEEE Trans. Nucl. Sci. 55 2928

  • [1]

    Bi J S, Liu G, Luo J J, Han Z S 2013 Acta Phys. Sin. 62 208501 (in Chinese) [毕津顺, 刘刚, 罗家俊, 韩郑生 2013 62 208501]

    [2]

    Bi J S, Zeng C B, Gao L C, Liu G, Luo J J, Han Z S 2014 Chin. Phys. B 23 088505

    [3]

    Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501 (in Chinese) [张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 62 048501]

    [4]

    Buchner S, Baze M, Brown D, McMorrow D, Melinger J 1997 IEEE Trans. Nucl. Sci. 44 2209

    [5]

    Mavis D G, Eaton P H 2000 Military and Aerospace Applications of Programmable Devices and Technologies Conference Maryland, USA, September 26-28, 2000 p26

    [6]

    Ladbury R L, Benedetto J, McMorrow D, Buchner S P, Label K A, Berg M D, Kim H S, Sanders A B, Friendlich M R, Phan A 2009 IEEE Trans. Nucl. Sci. 56 3334

    [7]

    Schwank J R, Shaneyfelt M R, McMorrow D, Ferlet-Cavrois V, Dodd P E, Heidel D F, Marshall P W, Pellish J A, Label K A, Rodbell K P, Hakey M, Flores R S, Swanson S E 2010 IEEE Trans. Nucl. Sci. 57 1827

    [8]

    Ferlet-Cavrois V, Paillet P, McMorrow D, Torres A, Gaillardin M, Melinger J S, Knudson A R, Campbell A B, Schwank J R, Vizkelethy G, Shaneyfelt M R, Hirose K, Faynot O, Jahan C, Tosti L 2005 IEEE Trans. Nucl. Sci. 52 2104

    [9]

    Gouker P, Brandt J, Wyatt P, Tyrrell B, Soares A, Knecht J, Keast C, McMorrow D, Narasimhan B, Gadlage M, Bhuva B 2008 IEEE Trans. Nucl. Sci. 55 2854

    [10]

    Richter A K, Arimura I 1987 IEEE Trans. Nucl. Sci. 34 1234

    [11]

    Ferlet-Cavrois V, Massengill L W, Gouker P 2013 IEEE Trans Nucl. Sci. 60 1767

    [12]

    Massengill L W, Tuinenga P W 2008 IEEE Trans. Nucl. Sci. 55 2861

    [13]

    Ferlet-Cavrois V, Paillet P, McMorrow D, Fel N, Baggio J, Girard S, Duhamel O, Melinger J S, Gaillardin M, Schwank J R, Dodd P E, Shaneyfelt M R, Felix J A 2007 IEEE Trans. Nucl. Sci. 54 2338

    [14]

    Ferlet-Cavrois V, Pouget V, McMorrow D, Schwank J R, Fel N, Essely F, Flores R S, Paillet P, Gaillardin M, Kobayashi D, Melinger J S, Duhamel O, Dodd P E, Shaneyfelt M R 2008 IEEE Trans.Nucl. Sci. 55 2842

    [15]

    Gouker P, Brandt J, Wyatt P, Tyrrell B, Soares A, Knecht J, Keast C, McMorrow D, Narasimham B, Gadlage M, Bhuva B 2008 IEEE Trans. Nucl. Sci. 55 2854

    [16]

    Burns J R 1964 RCA Rev. XXV 627

    [17]

    Kayssi A I, Sakallah K A, Burks T M1992 IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 39 42

    [18]

    Casey M C, Amusan O A, Nation S A, Loveless T D, Balasubramanian A, Bhuva B L, Reed R A, McMorrow D, Weller R A, Alles M L, Massengill L W, Melinger J S, Narasimham B 2008 IEEE Trans. Nucl. Sci. 55 3342

    [19]

    Wirth G, Kastensmidt F L, Ribeiro I 2008 IEEE Trans. Nucl. Sci. 55 2928

  • [1] 沈睿祥, 张鸿, 宋宏甲, 侯鹏飞, 李波, 廖敏, 郭红霞, 王金斌, 钟向丽. 全耗尽绝缘体上硅氧化铪基铁电场效应晶体管存储单元单粒子效应计算机模拟研究.  , 2022, 71(6): 068501. doi: 10.7498/aps.71.20211655
    [2] 张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴. 增益开关线偏振单频脉冲光纤激光器.  , 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [3] 赵雯, 陈伟, 罗尹虹, 贺朝会, 沈忱. 离子径迹特征与纳米反相器链单粒子瞬态的关联性研究.  , 2021, 70(12): 126102. doi: 10.7498/aps.70.20210192
    [4] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽. HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟.  , 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [5] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器.  , 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [6] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象.  , 2020, 69(8): 086101. doi: 10.7498/aps.69.20191896
    [7] 陈钱, 马英起, 陈睿, 朱翔, 李悦, 韩建伟. 激光模拟瞬态剂量率闩锁效应电流特征机制研究.  , 2019, 68(12): 124202. doi: 10.7498/aps.68.20190237
    [8] 高占占, 侯鹏飞, 郭红霞, 李波, 宋宏甲, 王金斌, 钟向丽. 选择性埋氧层上硅器件的单粒子瞬态响应的温度相关性.  , 2019, 68(4): 048501. doi: 10.7498/aps.68.20191932
    [9] 刘向远, 钱仙妹, 朱文越, 刘丹丹, 范传宇, 周军, 杨欢. 基于波长330 nm激光激发多色激光导星回波光子数的数值计算与探讨.  , 2018, 67(1): 014205. doi: 10.7498/aps.67.20171025
    [10] 杨宏志, 赵长明, 张海洋, 杨苏辉, 李晨. 基于频移反馈腔的全光纤射频调制脉冲激光研究.  , 2017, 66(18): 184201. doi: 10.7498/aps.66.184201
    [11] 张伟, 石震武, 霍大云, 郭小祥, 彭长四. 脉冲激光原位辐照对InAs/GaAs(001)量子点生长的影响.  , 2016, 65(11): 117801. doi: 10.7498/aps.65.117801
    [12] 韩舸, 龚威, 马昕, 相成志, 梁艾琳, 郑玉新. 地基CO2廓线探测差分吸收激光雷达.  , 2015, 64(24): 244206. doi: 10.7498/aps.64.244206
    [13] 李宏伟, 韩建伟, 蔡明辉, 吴逢时, 张振龙. 激光诱导等离子体模拟微小空间碎片撞击诱发放电研究.  , 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [14] 陈睿, 余永涛, 上官士鹏, 封国强, 韩建伟. 90 nm互补金属氧化物半导体静态随机存储器局部单粒子闩锁传播效应诱发多位翻转的机理.  , 2014, 63(12): 128501. doi: 10.7498/aps.63.128501
    [15] 毕津顺, 刘刚, 罗家俊, 韩郑生. 22 nm工艺超薄体全耗尽绝缘体上硅晶体管单粒子瞬态效应研究.  , 2013, 62(20): 208501. doi: 10.7498/aps.62.208501
    [16] 粟荣涛, 周朴, 王小林, 冀翔, 许晓军. 不同波形脉冲激光的时域误差对相干合成的影响.  , 2012, 61(8): 084206. doi: 10.7498/aps.61.084206
    [17] 彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强. 皮秒和纳秒单脉冲激光加热Al/NC复合纳米含能材料的热动力学分析.  , 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
    [18] 乔 峰, 黄信凡, 朱 达, 马忠元, 邹和成, 隋妍萍, 李 伟, 周晓辉, 陈坤基. 激光限制结晶技术制备nc-Si/SiO2多层膜.  , 2004, 53(12): 4303-4307. doi: 10.7498/aps.53.4303
    [19] 张端明, 侯思普, 关 丽, 钟志成, 李智华, 杨凤霞, 郑克玉. 脉冲激光制备薄膜材料的烧蚀机理.  , 2004, 53(7): 2237-2243. doi: 10.7498/aps.53.2237
    [20] 张端明, 李智华, 黄明涛, 张美军, 关丽, 邹明清, 钟志成. 脉冲激光烧蚀块状靶材的双动态界面研究.  , 2001, 50(5): 914-920. doi: 10.7498/aps.50.914
计量
  • 文章访问数:  6226
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-03
  • 修回日期:  2015-02-09
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map