搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究

杨增强 张力达

引用本文:
Citation:

红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究

杨增强, 张力达

Quantum control of the XUV photoabsorption spectrum of helium atoms via the carrier-envelope-phase of an infrared laser pulse

Yang Zeng-Qiang, Zhang Li-Da
PDF
导出引用
  • 本文通过数值求解双电子含时薛定谔方程, 研究了利用红外(IR)超短超强激光的载波包络相位(CEP)对氦(He)原子的极紫外光(Extreme Ultra-Violet, XUV)吸收谱进行量子调控的可能性. 当XUV作用到He原子上时, 原子存在两个电离通道: 无明显电子关联的直接电离和带强烈电子关联的间接电离(即通过双激发态自发电离). 两个通道相互干涉可在XUV吸收谱中形成人们所熟知的Fano共振线型, 并且谱线的形状由两个通道间的比例决定. 通过引入另外一束IR激光, 我们发现, 原子的XUV吸收谱将发生明显改变, 即伴随着超短脉冲CEP的改变而 呈现出从Fano线型到Lorentz线型的周期性连续变化. 上述结果表明, 通过合理地控制超短脉冲的CEP可以有效地调控两个电离通道之间的量子干涉, 进而为探测和操控原子中的极端超快电子关联提供可能.
    In the present paper, we investigate the quantum control of the XUV photoabsorption spectrum of helium atoms via the carrier-envelope-phase (CEP) of an infrared (IR) laser pulse by numerically solving the time-dependent one-dimensional (1D) two-electron Schrödinger equation. The advantage of the 1D model is that the associated time-dependent Schrodinger equation (TDSE) can be solved numerically with high precision as taking full account of the interaction between the electrons and without making any assumptions about the dominant physical mechanisms. In our study, a single attosecond XUV pulse with broad bandwidth is used to create a wave packet consisting of several doubly-excited states. Helium atoms subjected to the XUV pulse can be ionized through two different pathways: either direct ionization into the continuum or indirect ionization via the autoionization of doubly excited states. The interference of these two paths gives rise to the well-known Fano line shape in the photoabsorption spectrum, which is determined by the ratio and relative phases of the two paths. In the presence of an IR laser pulse, however, we find that the Fano line profiles are strongly modified, in good agreement with recent experimental observations [C. Ott et al., Science 340, 716 (2013); C. Ott et al., Nature 516, 374 (2014)]. At certain time delays, we can observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections, indicating that the XUV light can be amplified during the interaction with atoms. We fit the absorption spectra with the Fano line profiles giving rise to the CEP-dependent Fano q parameters, which are modulated from extremely large positive value to extremely large negative value. Since the q parameter is proportional to the ratio between the dipole matrix of the indirect ionization path and the dipole matrix of the direct ionization path; these results indicate that the quantum interference between the two ionization paths can be efficiently controlled by the CEP of an ultrashort laser pulse, thus offering another possibility (in addition to the laser intensity and the time delay between the XUV pulse and the IR laser) of manipulating the extreme ultrafast electronic motion in atoms. Our predictions can be experimentally verified easily with the present experimental technique.
    • 基金项目: 高等学校博士学科点专项科研基金(批准号:20121101120046)资助的课题.
    • Funds: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121101120046).
    [1]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [2]

    Uiberacker M, Uphues Th, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schröder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2007 Nature 446 627

    [3]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739

    [4]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803

    [5]

    Schultze M, Fie M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris Th, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdöfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F, Yakovlev V S 2010 Science 328 1658

    [6]

    Geiseler H, Rottke H, Zhavoronkov N, Sandner W 2012 Phys. Rev. Lett. 108 123601

    [7]

    Mauritsson J, Remetter T, Swoboda M, Klnder K, L'Huillier A, Schafer K J, Ghafur O, Kelkensberg F, Siu W, Johnsson P, Vrakking M J J, Znakovskaya I, Uphues T, Zherebtsov S, Kling M F, L'e pine F, Benedetti E, Ferrari F, Sansone G, Nisoli M 2010 Phys. Rev. Lett. 105 053001

    [8]

    Holler M, Schapper F, Gallmann L, Keller U 2011 Phys. Rev. Lett. 106 123601

    [9]

    Chini M, Zhao B, Wang H, Cheng Y, Hu S X, Chang Z 2012 Phys. Rev. Lett. 109 073601

    [10]

    Chen S M, Bell J, Beck A R, Mashiko H, Wu M, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R, Schafer K J 2012 Phys. Rev. A 86 063408

    [11]

    Chini M, Wang X, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S, Chang Z 2013 Sci. Rep. 3 1105

    [12]

    Fano U 1961 Phys. Rev. 124 1866

    [13]

    Chu W C, Lin C D 2010 Phys. Rev. A 82 053415

    [14]

    Gilbertson S, Chini M, Feng X, Khan S, Wu Y, Chang Z 2010 Phys. Rev. Lett. 105 263002

    [15]

    Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y Z, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñero J, Martín F, Pfeifer T 2014 Nature 516 374

    [16]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716

    [17]

    Argenti L, Ott C, Pfeifer T, Martin F 2012 ArXiv: 1211.2566

    [18]

    Grobe R, Eberly J H 1992 Phys. Rev. Lett. 68 2905

    [19]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707

    [20]

    Zhao J, Lein M 2012 New J. Phys. 14 065003

    [21]

    van der Zwan E V, Lein M 2012 Phys. Rev. Lett. 108 043004

    [22]

    Baltŭska A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W, Krausz F 2003 Nature 421 611

    [23]

    Song L W, Li C, Wang D, Xu X H, Leng Y X, Li R X, 2011 Acta Phys. Sin. 60 054206 in Chinese 2011 60 054206 (in Chinese) [宋立伟, 李闯, 王丁, 许灿华, 冷雨欣, 李儒新 2011 60 054206]

    [24]

    Zhang M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201

    [25]

    Tian J, Li M, Yu J Z, Deng Y K, Liu Y Q 2014 Chin. Phys. B 23 104211

    [26]

    Zeng T T, Li P C, Zhou X X 2014 Acta Phys. Sin. 63 203201 (in Chinese) [曾婷婷, 李鹏程, 周效信 2014 63 203201]

    [27]

    Tian Y Y, Wei S S, Guo F M, Li S Y, Yang Y J, 2013 Acta Phys. Sin. 62 153202 in Chinese 2013 62 153202 (in Chinese) [田原野, 魏珊珊, 郭福明, 李苏宇, 杨玉军 2013 62 153202]

    [28]

    Feit M, Fleck J, Steiger A 1982 J. Comput. Phys. 47 412

    [29]

    Gaarde M B, Buth C, Tate J L, Schafer K J 2011 Phys. Rev. A 83 013419

  • [1]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [2]

    Uiberacker M, Uphues Th, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schröder H, Lezius M, Kompa K L, Muller H G, Vrakking M J J, Hendel S, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2007 Nature 446 627

    [3]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739

    [4]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803

    [5]

    Schultze M, Fie M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris Th, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdöfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F, Yakovlev V S 2010 Science 328 1658

    [6]

    Geiseler H, Rottke H, Zhavoronkov N, Sandner W 2012 Phys. Rev. Lett. 108 123601

    [7]

    Mauritsson J, Remetter T, Swoboda M, Klnder K, L'Huillier A, Schafer K J, Ghafur O, Kelkensberg F, Siu W, Johnsson P, Vrakking M J J, Znakovskaya I, Uphues T, Zherebtsov S, Kling M F, L'e pine F, Benedetti E, Ferrari F, Sansone G, Nisoli M 2010 Phys. Rev. Lett. 105 053001

    [8]

    Holler M, Schapper F, Gallmann L, Keller U 2011 Phys. Rev. Lett. 106 123601

    [9]

    Chini M, Zhao B, Wang H, Cheng Y, Hu S X, Chang Z 2012 Phys. Rev. Lett. 109 073601

    [10]

    Chen S M, Bell J, Beck A R, Mashiko H, Wu M, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R, Schafer K J 2012 Phys. Rev. A 86 063408

    [11]

    Chini M, Wang X, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S, Chang Z 2013 Sci. Rep. 3 1105

    [12]

    Fano U 1961 Phys. Rev. 124 1866

    [13]

    Chu W C, Lin C D 2010 Phys. Rev. A 82 053415

    [14]

    Gilbertson S, Chini M, Feng X, Khan S, Wu Y, Chang Z 2010 Phys. Rev. Lett. 105 263002

    [15]

    Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y Z, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñero J, Martín F, Pfeifer T 2014 Nature 516 374

    [16]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716

    [17]

    Argenti L, Ott C, Pfeifer T, Martin F 2012 ArXiv: 1211.2566

    [18]

    Grobe R, Eberly J H 1992 Phys. Rev. Lett. 68 2905

    [19]

    Lein M, Gross E K U, Engel V 2000 Phys. Rev. Lett. 85 4707

    [20]

    Zhao J, Lein M 2012 New J. Phys. 14 065003

    [21]

    van der Zwan E V, Lein M 2012 Phys. Rev. Lett. 108 043004

    [22]

    Baltŭska A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W, Krausz F 2003 Nature 421 611

    [23]

    Song L W, Li C, Wang D, Xu X H, Leng Y X, Li R X, 2011 Acta Phys. Sin. 60 054206 in Chinese 2011 60 054206 (in Chinese) [宋立伟, 李闯, 王丁, 许灿华, 冷雨欣, 李儒新 2011 60 054206]

    [24]

    Zhang M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201

    [25]

    Tian J, Li M, Yu J Z, Deng Y K, Liu Y Q 2014 Chin. Phys. B 23 104211

    [26]

    Zeng T T, Li P C, Zhou X X 2014 Acta Phys. Sin. 63 203201 (in Chinese) [曾婷婷, 李鹏程, 周效信 2014 63 203201]

    [27]

    Tian Y Y, Wei S S, Guo F M, Li S Y, Yang Y J, 2013 Acta Phys. Sin. 62 153202 in Chinese 2013 62 153202 (in Chinese) [田原野, 魏珊珊, 郭福明, 李苏宇, 杨玉军 2013 62 153202]

    [28]

    Feit M, Fleck J, Steiger A 1982 J. Comput. Phys. 47 412

    [29]

    Gaarde M B, Buth C, Tate J L, Schafer K J 2011 Phys. Rev. A 83 013419

  • [1] 郭牧城, 汪福东, 胡肇高, 任苗苗, 孙伟业, 肖婉婷, 刘书萍, 钟满金. 微纳尺度稀土掺杂晶体的量子相干性能及其应用研究进展.  , 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [2] 何鑫, 李鑫焱, 李景辉, 张振华. Fe原子吸附的锑烯/WS2异质结的磁电子性质及调控效应.  , 2022, 71(21): 218503. doi: 10.7498/aps.71.20220949
    [3] 肖智磊, 全威, 许松坡, 柳晓军, 魏政荣, 陈京. 中红外激光场下阈上电离能谱中的低能结构.  , 2022, 71(23): 233208. doi: 10.7498/aps.71.20221609
    [4] 谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球. 重费米子材料与物理.  , 2019, 68(17): 177101. doi: 10.7498/aps.68.20190801
    [5] 姚洪斌, 蒋相站, 曹长虹, 李文亮. HD+分子的强场光解离动力学及其量子调控的理论研究.  , 2019, 68(17): 178201. doi: 10.7498/aps.68.20190400
    [6] 张斯淇, 陆景彬, 刘晓静, 刘继平, 李宏, 梁禺, 张晓茹, 刘晗, 吴向尧, 郭义庆. 运用理想光子禁带模型实现对激发态原子系统演化的调控.  , 2018, 67(9): 094205. doi: 10.7498/aps.67.20172050
    [7] 王文彬, 朱银燕, 殷立峰, 沈健. 复杂氧化物中电子相分离的量子调控.  , 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [8] 刘丹, 洪伟毅, 郭旗. 周期量级飞秒脉冲电场在非线性克尔介质中的传输.  , 2016, 65(1): 014208. doi: 10.7498/aps.65.014208
    [9] 丁晶洁, 王全军, 刘作业, 胡碧涛. He原子体系中偶极子响应的周期性量子相位调控的理论研究.  , 2015, 64(24): 243201. doi: 10.7498/aps.64.243201
    [10] 姚洪斌, 李文亮, 张季, 彭敏. K2分子在强激光场下的量子调控:缀饰态选择性分布.  , 2014, 63(17): 178201. doi: 10.7498/aps.63.178201
    [11] 尤良芳, 令维军, 李可, 张明霞, 左银燕, 王屹山. 基于单个BBO晶体载波包络相位稳定的高效率光参量放大器.  , 2014, 63(21): 214203. doi: 10.7498/aps.63.214203
    [12] 田原野, 魏珊珊, 郭福明, 李苏宇, 杨玉军. 共振条件下载波包络相位效应对阈上电离谱的影响.  , 2013, 62(15): 153202. doi: 10.7498/aps.62.153202
    [13] 黄仙山, 刘海莲. 运用动态腔环境实现对原子自发辐射过程的调控.  , 2011, 60(3): 034205. doi: 10.7498/aps.60.034205
    [14] 黄仙山, 刘海莲, 羊亚平, 石云龙. 运用动态Lorentz库实现对激发态原子动力学特性的调控.  , 2011, 60(2): 024205. doi: 10.7498/aps.60.024205
    [15] 王建良, 张春梅, 宋立伟, 冷雨欣. 双光路测量红外飞秒激光脉冲的载波包络相位稳定性.  , 2009, 58(6): 3966-3970. doi: 10.7498/aps.58.3966
    [16] 张继彦, 杨家敏, 许 琰, 杨国洪, 颜 君, 孟广为, 丁耀南, 汪 艳. 辐射加热Al等离子体的吸收谱实验.  , 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [17] 朱江峰, 杜 强, 王向林, 滕 浩, 韩海年, 魏志义, 侯 洵. 飞秒钛宝石放大激光脉冲的载波包络相位测量与控制.  , 2008, 57(12): 7753-7757. doi: 10.7498/aps.57.7753
    [18] 岳伟伟, 王卫宁, 赵国忠, 张存林, 闫海涛. 芳香族氨基酸的太赫兹光谱研究.  , 2005, 54(7): 3094-3099. doi: 10.7498/aps.54.3094
    [19] 王伟田, 杨 光, 关东仪, 吴卫东, 陈正豪. 金属纳米团簇复合薄膜Au/BaTiO3与Fe/BaTiO3的PLD制备及其光吸收特征.  , 2004, 53(3): 932-935. doi: 10.7498/aps.53.932
    [20] 邵 军. 谱导数法在光谱研究GaInAs/InP和GaInP/AlGaInP多量子阱中的应用.  , 2003, 52(10): 2534-2540. doi: 10.7498/aps.52.2534
计量
  • 文章访问数:  6691
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-26
  • 修回日期:  2015-02-27
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map