搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

He原子体系中偶极子响应的周期性量子相位调控的理论研究

丁晶洁 王全军 刘作业 胡碧涛

引用本文:
Citation:

He原子体系中偶极子响应的周期性量子相位调控的理论研究

丁晶洁, 王全军, 刘作业, 胡碧涛

Theoretical study of the periodic quantum phase modulation of the dipole response in atomic He

Ding Jing-Jie, Wang Quan-Jun, Liu Zuo-Ye, Hu Bi-Tao
PDF
导出引用
  • 基于激光诱导相位模型, 研究了周期性相位调控的He原子体系的光谱响应. 研究发现,周期性的相位调控会导致He原子吸收谱由单个孤立的洛伦兹线型转化为等间隔的“梳状”结构. “梳状”光谱的性质主要由原子系统和控制脉冲链的性质决定, 并给出了表征“梳状”光谱的理论公式. 该机理具有普遍适用性, 它可以应用到任意原子体系, 进而推广到任意波段, 并且为任意波段的脉冲整形提供了可能.
    Based on the laser-induced-phase model, periodic quantum phase modulation of the dipole response in atomic He is studied theoretically. The two-level system of the transition 1s2→1s2p with a delay width of 1.8 × 109 s-1 and an energy difference of 21.2 eV between the excited state and the ground state is used in the calculation. The system is excited by attosecond laser pulse from high harmonic generator, and the spectral response of the system is of single isolated symmetric Lorentzian absorption line. After the excitation, near infrared (NIR) femtosecond laser pulse train with a repetition rate of 5 GHz, central frequency 780 nm, and pulse duration of 100 fs, is utilized to periodically modify the spontaneous decay of the excited 1s2p level. The incremental phase step Δφ depends on the intensity of the NIR laser pulse, while the initial offset phase φ can be controlled independently by partially overlapping the first NIR pulse with the excitation. Simulated results show that the Lorentzian absorption line is transformed into comb-like spectral structure with equal gap depending on the repetition rate of the NIR pulse train. The line shape of each comb tooth is symmetric Lorentzian line by setting φ = Δφ/2 = π/2, while it is Fano line by setting φ = Δφ = π. The location of the comb structure is mainly dependent on the energy difference between the excited state and the ground state, while it can be slightly tuned by controlling the incremental phase step Δφ. We develop an analytic description of the comb-like spectral structure by Fourier analysis, depending on both the atomic and the phase-control properties. The analytical expressions can be readily used to estimate the exact experimental parameters. The universality of this mechanism allows the spectral modulation in arbitrary atomic system at arbitrary frequency, including the hard X-ray regime, by using reference transitions in highly charged ions. The generalization of this approach should thus not only enable relative frequency measurement and relevant applications at extremely high frequencies, but also open the way for pulse shaping at arbitrary frequencies.
      通信作者: 刘作业, zyl@lzu.edu.cn;hubt@lzu.edu.cn ; 胡碧涛, zyl@lzu.edu.cn;hubt@lzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11504148, 11135002)和兰州大学中央高校基本科研业务费 (批准号: lzujbky-2015-269)资助的课题.
      Corresponding author: Liu Zuo-Ye, zyl@lzu.edu.cn;hubt@lzu.edu.cn ; Hu Bi-Tao, zyl@lzu.edu.cn;hubt@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504148, 11135002) and the Fundamental Research Funds for the Central Universities, China (Grant No. lzujbky-2015-269).
    [1]

    Fraunhofer J 1817 Annalen der Physik 56 264

    [2]

    Kirchhoff G, Bunsen R 1860 Annalen der Physik 186 161

    [3]

    Liu Z Y, Shi Y C, Hu B T 2014 Acta Phys. Sin. 63 184206 (in Chinese) [刘作业, 史彦超, 胡碧涛 2014 63 184206]

    [4]

    Liu Z Y, Sun S H, Shi Y C, Ding P J, Liu Q C, Liu X L, Ding B W, Hu B T 2013 Chin. Phys. B 22 075204

    [5]

    Sun S H, Liu X, Liu Z Y, Wang X, Ding P, Liu Q, Guo Z, Hu B T 2013 Chin. Phys. Lett. 30 045202

    [6]

    Zhang Z X, Xu R J, Song L W, Wang D, Liu P, Leng Y X 2012 Acta Phys. Sin. 61 184209 (in Chinese) [张宗昕, 许荣杰, 宋立伟, 王丁, 刘鹏, 冷雨欣 2012 61 184209]

    [7]

    Dai X C, Richter M, Li H B, Bristow A D, Falvo C, Mukamel S, Cundiff S T 2012 Phys. Rev. Lett. 108 193201

    [8]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716

    [9]

    Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñero J, Martín F, Pfeifer T 2014 Nature 516 374

    [10]

    Lin C D, Chu W C 2013 Science 340 694

    [11]

    Liu Z Y, Cavaletto S M, Ott C, Meyer K, Mi Y, Harman Z, Keitel C H, Pfeifer T 2015 Phys. Rev. Lett. 115 033003

    [12]

    Chini M, Zhao B, Wang H, Cheng Y, Hu S X, Chang Z 2012 Phys. Rev. Lett. 109 073601

    [13]

    Mashiko H, Yamaguchi T, Oguri K, Suda A, Gotoh H 2014 Nat. Commun. 5 6599

    [14]

    Zhao J, Lein M 2012 New J. Phys. 14 065003

    [15]

    Lucchini M, Herrmann J, Ludwig A, Locher R, Sabbar M, Gallmann L, Keller U 2013 New J. Phys. 15 103010

    [16]

    Chen S, Bell M J, Beck A R, Mashiko H, Wu M, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R, Schafer K J 2012 Phys. Rev. A 86 063408

    [17]

    Chen S, Wu M, Gaarde M B, Schafer K J 2013 Phys. Rev. A 87 033408

    [18]

    Chen S, Wu M, Gaarde M B, Schafer K J 2013 Phys. Rev. A 88 033409

    [19]

    Fano U, Cooper J W 1968 Rev. Mod. Phys. 40 441

    [20]

    Pollard W T, Mathies R A 1992 Annu. Rev. Phys. Chem. 43 497

    [21]

    Tannoudji C C, Diu B, Lalöe F 1977 Quantum Mechanics (Vol. II) (New York: Wiley-Interscience Press) pp1095-1108

    [22]

    Rosen N Zener C 1932 Phys. Rev. 40 502

    [23]

    Lewenstein M, Zakrzewski J, Rzązewski K 1986 J. Opt. Soc. Am. B 3 22

    [24]

    Budker D, Kimball D F, DeMille D P 2004 Atomic Physics (Oxford: Oxford University Press) pp13-18

    [25]

    Drake G W F 2006 High Precision Calculations for Helium (Springer Handbook of Atomic Molecular and Optical Physics) (New York: Springer) pp107-217

    [26]

    Pekarek S, Klenner A, Sdmeyer T, Fiebig C, Paschke K, Erbert G, Keller U 2012 Opt. Express 20 4248

    [27]

    Lim J, Chen H, Xu S, Yang Z, Chang G, Kärtner F X 2014 Opt. Lett. 39 2060

    [28]

    Klenner A, Golling M, Keller U 2014 Opt. Express 22 11884

    [29]

    Bernitt S, Brown G V, Rudolph J K, et al. 2012 Nature 492 225

    [30]

    Derevianko A, Johnson W R 1997 Phys. Rev. A 56 1228

  • [1]

    Fraunhofer J 1817 Annalen der Physik 56 264

    [2]

    Kirchhoff G, Bunsen R 1860 Annalen der Physik 186 161

    [3]

    Liu Z Y, Shi Y C, Hu B T 2014 Acta Phys. Sin. 63 184206 (in Chinese) [刘作业, 史彦超, 胡碧涛 2014 63 184206]

    [4]

    Liu Z Y, Sun S H, Shi Y C, Ding P J, Liu Q C, Liu X L, Ding B W, Hu B T 2013 Chin. Phys. B 22 075204

    [5]

    Sun S H, Liu X, Liu Z Y, Wang X, Ding P, Liu Q, Guo Z, Hu B T 2013 Chin. Phys. Lett. 30 045202

    [6]

    Zhang Z X, Xu R J, Song L W, Wang D, Liu P, Leng Y X 2012 Acta Phys. Sin. 61 184209 (in Chinese) [张宗昕, 许荣杰, 宋立伟, 王丁, 刘鹏, 冷雨欣 2012 61 184209]

    [7]

    Dai X C, Richter M, Li H B, Bristow A D, Falvo C, Mukamel S, Cundiff S T 2012 Phys. Rev. Lett. 108 193201

    [8]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716

    [9]

    Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñero J, Martín F, Pfeifer T 2014 Nature 516 374

    [10]

    Lin C D, Chu W C 2013 Science 340 694

    [11]

    Liu Z Y, Cavaletto S M, Ott C, Meyer K, Mi Y, Harman Z, Keitel C H, Pfeifer T 2015 Phys. Rev. Lett. 115 033003

    [12]

    Chini M, Zhao B, Wang H, Cheng Y, Hu S X, Chang Z 2012 Phys. Rev. Lett. 109 073601

    [13]

    Mashiko H, Yamaguchi T, Oguri K, Suda A, Gotoh H 2014 Nat. Commun. 5 6599

    [14]

    Zhao J, Lein M 2012 New J. Phys. 14 065003

    [15]

    Lucchini M, Herrmann J, Ludwig A, Locher R, Sabbar M, Gallmann L, Keller U 2013 New J. Phys. 15 103010

    [16]

    Chen S, Bell M J, Beck A R, Mashiko H, Wu M, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R, Schafer K J 2012 Phys. Rev. A 86 063408

    [17]

    Chen S, Wu M, Gaarde M B, Schafer K J 2013 Phys. Rev. A 87 033408

    [18]

    Chen S, Wu M, Gaarde M B, Schafer K J 2013 Phys. Rev. A 88 033409

    [19]

    Fano U, Cooper J W 1968 Rev. Mod. Phys. 40 441

    [20]

    Pollard W T, Mathies R A 1992 Annu. Rev. Phys. Chem. 43 497

    [21]

    Tannoudji C C, Diu B, Lalöe F 1977 Quantum Mechanics (Vol. II) (New York: Wiley-Interscience Press) pp1095-1108

    [22]

    Rosen N Zener C 1932 Phys. Rev. 40 502

    [23]

    Lewenstein M, Zakrzewski J, Rzązewski K 1986 J. Opt. Soc. Am. B 3 22

    [24]

    Budker D, Kimball D F, DeMille D P 2004 Atomic Physics (Oxford: Oxford University Press) pp13-18

    [25]

    Drake G W F 2006 High Precision Calculations for Helium (Springer Handbook of Atomic Molecular and Optical Physics) (New York: Springer) pp107-217

    [26]

    Pekarek S, Klenner A, Sdmeyer T, Fiebig C, Paschke K, Erbert G, Keller U 2012 Opt. Express 20 4248

    [27]

    Lim J, Chen H, Xu S, Yang Z, Chang G, Kärtner F X 2014 Opt. Lett. 39 2060

    [28]

    Klenner A, Golling M, Keller U 2014 Opt. Express 22 11884

    [29]

    Bernitt S, Brown G V, Rudolph J K, et al. 2012 Nature 492 225

    [30]

    Derevianko A, Johnson W R 1997 Phys. Rev. A 56 1228

  • [1] 郑转平, 刘榆杭, 曾方, 赵帅宇, 朱礼鹏. 基于太赫兹光谱的DL-谷氨酸及其一水合物的定性及定量研究.  , 2023, 72(8): 083201. doi: 10.7498/aps.72.20222314
    [2] 郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐. 姜黄素与邻苯二酚共晶的太赫兹光谱.  , 2023, 72(17): 173201. doi: 10.7498/aps.72.20230739
    [3] 朱清智, 沈栋辉, 吴逢铁, 何西. 部分相干光对周期性局域空心光束的影响.  , 2016, 65(4): 044103. doi: 10.7498/aps.65.044103
    [4] 杨增强, 张力达. 红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究.  , 2015, 64(13): 133203. doi: 10.7498/aps.64.133203
    [5] 徐国亮, 刘雪峰, 夏要争, 张现周, 刘玉芳. 外电场作用下Si2O分子的激发特性.  , 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [6] 臧竞存, 郑锴, 邹玉林, 吴敬朋, 宋晏蓉, 刘国庆, 冯宝华, 张东香, 刘玉龙, 朱恪. 掺铥钨酸钡单晶生长和光谱研究.  , 2010, 59(1): 609-615. doi: 10.7498/aps.59.609
    [7] 胡伟达, 殷菲, 叶振华, 全知觉, 胡晓宁, 李志锋, 陈效双, 陆卫. 吸收层特性和异质结界面电荷对12.5 μm长波HgCdTe光伏探测器响应率的影响研究.  , 2009, 58(11): 7891-7896. doi: 10.7498/aps.58.7891
    [8] 万勇, 韩文娟, 刘均海, 夏临华, Xavier Mateos, Valentin Petrov, 张怀金, 王继扬. 单斜结构的Yb:KLu(WO4)2晶体光谱和激光性质的各向异性.  , 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [9] 张继彦, 杨家敏, 许 琰, 杨国洪, 颜 君, 孟广为, 丁耀南, 汪 艳. 辐射加热Al等离子体的吸收谱实验.  , 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [10] 牛 艺, 王增梅, 刘英才, 尹衍升, 袁多荣. Tm3+掺杂硅酸镓镧(La3Ga5SiO14)晶体的结构与光学性能研究.  , 2007, 56(5): 2968-2973. doi: 10.7498/aps.56.2968
    [11] 赵跃智, 陈长乐, 高国棉, 杨晓光, 袁 孝, 宋宙模. Mn掺杂ZnO薄膜的结构及光学性能研究.  , 2006, 55(6): 3132-3135. doi: 10.7498/aps.55.3132
    [12] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量.  , 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [13] 岳伟伟, 王卫宁, 赵国忠, 张存林, 闫海涛. 芳香族氨基酸的太赫兹光谱研究.  , 2005, 54(7): 3094-3099. doi: 10.7498/aps.54.3094
    [14] 郑俊娟, 孙 刚. 周期排列的电介质小球所诱发的金属-电介质表面上的表面等离子激元的光学性质.  , 2005, 54(11): 5210-5217. doi: 10.7498/aps.54.5210
    [15] 王伟田, 杨 光, 关东仪, 吴卫东, 陈正豪. 金属纳米团簇复合薄膜Au/BaTiO3与Fe/BaTiO3的PLD制备及其光吸收特征.  , 2004, 53(3): 932-935. doi: 10.7498/aps.53.932
    [16] 邵 军. 谱导数法在光谱研究GaInAs/InP和GaInP/AlGaInP多量子阱中的应用.  , 2003, 52(10): 2534-2540. doi: 10.7498/aps.52.2534
    [17] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 周期性极化铌酸锂波导全光开关特性分析.  , 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
    [18] 范品忠, E.FILL. 共振光泵X射线激光的抽运谱线和吸收谱线波长匹配实验.  , 1996, 45(2): 205-209. doi: 10.7498/aps.45.205
    [19] 金奎娟, 潘少华, 杨国桢. 量子阱吸收谱中的Fano效应.  , 1995, 44(10): 1615-1621. doi: 10.7498/aps.44.1615
    [20] 刘湘娜, 何宇亮, F. WANG, R. SCHWARZ. 纳米硅薄膜光吸收谱的研究.  , 1993, 42(12): 1979-1984. doi: 10.7498/aps.42.1979
计量
  • 文章访问数:  5950
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-14
  • 修回日期:  2015-09-26
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map