搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两级式光伏并网逆变器建模与非线性动力学行为研究

廖志贤 罗晓曙 黄国现

引用本文:
Citation:

两级式光伏并网逆变器建模与非线性动力学行为研究

廖志贤, 罗晓曙, 黄国现

Numerical modeling and research on nonlinear dynamic behaviors of two-stage photovoltaic grid-connected inverter

Liao Zhi-Xian, Luo Xiao-Shu, Huang Guo-Xian
PDF
导出引用
  • 本文首先建立了两级式光伏并网逆变器严格的分段光滑状态方程, 分析级联情况下光伏阵列电压对光伏并网逆变器非线性动力学行为的影响, 然后探讨拓展两级式光伏并网逆变器输入电压范围的策略, 并研究前后级电路内部参数变化引起并网逆变器输出电流的快变尺度分岔和慢变尺度分岔现象. 研究发现: 若对光伏阵列电压进行分段控制, 可以有效展宽两级式光伏并网逆变器的输入电压范围; 适当增加前级输出电容值、电感量, 可以避免系统产生混沌运动, 而后级参数的取值需避开多个不连续的混沌区域. 研究结果对提高光伏发电系统的效率与稳定性有较重要的参考价值.
    In this paper, the piecewise smooth state equation of a two-stage photovoltaic grid-connected (TPG) inverter is established and studied; based on the solution to the piecewise smooth state equation of the TPG inverter, effects of the photovoltaic array voltage on nonlinear dynamical behaviors of the TPG inverter are analyzed by using bifurcation diagram, folded diagram, 3D phase diagram, and Poincaré section. Then the nonlinear dynamical behaviors of TPG inverter are compared with the conventional one. And a strategy of expanding the input voltage range for the TPG inverter is explored. Finally, the nonlinear dynamical behaviors in it caused by the variation of main circuit parameters: such as the output inductance and capacitance of the front-stage, as well as those of the second-stage, are discussed through slow-scale bifurcation diagrams. Studies have found that it is effective to expand the input voltage range of the TPG inverter by segment control of the photovoltaic array voltage, and the chaotic phenomena in the TPG inverter can be avoided by increasing the parameter values of inertial devices such as output inductance and capacitance in the front-stage appropriately, but the values of output inductance and capacitance in the second-stage should be away from the multiple noncontiguous region, since it can cause chaotic behavior. The above work may have important guiding significance and application for improving the stability and efficiency of two-stage photovoltaic grid-connected inverter based photovoltaic power generation system.
    • 基金项目: 国家自然科学基金(批准号:11262004)和广西科学研究与技术开发计划(桂科攻1348017-2)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11262004), and the Science and Technology Development Program of Guangxi Province, China (Grant No. 1348017-2).
    [1]

    Deivasundari P, Uma G, Santhi R 2014 IET Power Electron. 7 340

    [2]

    Bao B C, Zhang X, Xu J P, Wang J P 2013 IEEE Trans. Electron. Lett. 49 287

    [3]

    Bao B C, Zhou G H, Xu J P, Liu Z 2011 IEEE Trans. Power Electron. 26 1968

    [4]

    Yucel A C, Bagci H, Michielssen E 2013 IEEE Trans. Electromagn. Compat. 55 1154

    [5]

    Xie R L, Hao X, Wang Y, Yang X, Huang L, Wang C, Yang Y H 2014 Acta Phys. Sin. 63 120510 (in Chinese) [谢瑞良, 郝翔, 王跃, 杨旭, 黄浪, 王超, 杨月红 2014 63 120510]

    [6]

    Luo X S, Wang B H, Chen G R, Quan H J, Fang J Q, Zou Y L, Jiang P Q 2003 Acta Phys. Sin. 52 12 (in Chinese) [罗晓曙, 汪秉宏, 陈关荣, 全宏俊, 方锦清, 邹艳丽, 蒋品群 2003 52 12]

    [7]

    Freddy T K S, Rahim N A, Wooi-Ping H, Che H S 2014 IEEE Trans. Power Electron. 29 5358

    [8]

    Yang Y H, Wang H, Blaabjerg F, Kerekes T 2014 IEEE Trans. Power Electron. 29 6271

    [9]

    Liu H C, Yang S 2013 Acta Phys. Sin. 62 210502 (in Chinese) [刘洪臣, 杨爽 2013 62 210502]

    [10]

    Parvathy Shankar D, Govindarajan U, Karunakaran K 2013 IET Power Electron. 6 1956

    [11]

    Wu J K, Zhou L W, Lu W G 2012 Acta Phys. Sin. 61 210202 (in Chinese) [吴军科, 周雒维, 卢伟国 2012 61 210202]

    [12]

    Liu H C, Su Z X 2014 Acta Phys. Sin. 63 010505 (in Chinese) [刘洪臣, 苏振霞 2014 63 010505]

    [13]

    Herran M A, Fischer J R, Gonzalez S A, Judewicz M G, Carrica D O 2013 IEEE Trans. Power Electron. 28 2816

    [14]

    Gu Y J, Li W H, Zhao Y, Yang B, Li C S, He X N 2013 IEEE Trans. Power Electron. 28 793

    [15]

    Darwish A, Holliday D, Ahmed S, Massoud A M, Williams B W 2014 IEEE J. Emerg. Sel. Topics Power Electron. 2 797

    [16]

    Hongrae K, Parkhideh B, Bongers T D, Gao H 2013 IEEE Trans. Power Electron. 28 3788

    [17]

    Keyhani H, Toliyat H A 2014 IEEE Trans. Power Electron. 29 3919

    [18]

    Ahmed M E S, Orabi M, AbdelRahim O M 2013 IET Power Electron. 6 1812

    [19]

    Cecati C, Ciancetta F, Siano P 2010 IEEE Trans. Ind. Electron. 57 4115

    [20]

    Chen L, Amirahmadi A, Zhang Q, Kutkut N 2014 IEEE Trans. Power Electron. 29 3881

    [21]

    Yang B, Li W H, Zhao Y, He X N 2010 IEEE Trans. Power Electron. 25 992

    [22]

    Chan F, Calleja H 2011 IEEE Trans. Ind. Electron. 58 2683

    [23]

    Malik O, Havel P 2014 IEEE Trans. Sustain. Energy 5 673

    [24]

    Xiao H, Xie S 2012 IEEE Trans. Power Electron. 5 899

    [25]

    Liu H C, Li F, Su Z X, Sun L X 2013 Chin. Phys. B 22 110501

  • [1]

    Deivasundari P, Uma G, Santhi R 2014 IET Power Electron. 7 340

    [2]

    Bao B C, Zhang X, Xu J P, Wang J P 2013 IEEE Trans. Electron. Lett. 49 287

    [3]

    Bao B C, Zhou G H, Xu J P, Liu Z 2011 IEEE Trans. Power Electron. 26 1968

    [4]

    Yucel A C, Bagci H, Michielssen E 2013 IEEE Trans. Electromagn. Compat. 55 1154

    [5]

    Xie R L, Hao X, Wang Y, Yang X, Huang L, Wang C, Yang Y H 2014 Acta Phys. Sin. 63 120510 (in Chinese) [谢瑞良, 郝翔, 王跃, 杨旭, 黄浪, 王超, 杨月红 2014 63 120510]

    [6]

    Luo X S, Wang B H, Chen G R, Quan H J, Fang J Q, Zou Y L, Jiang P Q 2003 Acta Phys. Sin. 52 12 (in Chinese) [罗晓曙, 汪秉宏, 陈关荣, 全宏俊, 方锦清, 邹艳丽, 蒋品群 2003 52 12]

    [7]

    Freddy T K S, Rahim N A, Wooi-Ping H, Che H S 2014 IEEE Trans. Power Electron. 29 5358

    [8]

    Yang Y H, Wang H, Blaabjerg F, Kerekes T 2014 IEEE Trans. Power Electron. 29 6271

    [9]

    Liu H C, Yang S 2013 Acta Phys. Sin. 62 210502 (in Chinese) [刘洪臣, 杨爽 2013 62 210502]

    [10]

    Parvathy Shankar D, Govindarajan U, Karunakaran K 2013 IET Power Electron. 6 1956

    [11]

    Wu J K, Zhou L W, Lu W G 2012 Acta Phys. Sin. 61 210202 (in Chinese) [吴军科, 周雒维, 卢伟国 2012 61 210202]

    [12]

    Liu H C, Su Z X 2014 Acta Phys. Sin. 63 010505 (in Chinese) [刘洪臣, 苏振霞 2014 63 010505]

    [13]

    Herran M A, Fischer J R, Gonzalez S A, Judewicz M G, Carrica D O 2013 IEEE Trans. Power Electron. 28 2816

    [14]

    Gu Y J, Li W H, Zhao Y, Yang B, Li C S, He X N 2013 IEEE Trans. Power Electron. 28 793

    [15]

    Darwish A, Holliday D, Ahmed S, Massoud A M, Williams B W 2014 IEEE J. Emerg. Sel. Topics Power Electron. 2 797

    [16]

    Hongrae K, Parkhideh B, Bongers T D, Gao H 2013 IEEE Trans. Power Electron. 28 3788

    [17]

    Keyhani H, Toliyat H A 2014 IEEE Trans. Power Electron. 29 3919

    [18]

    Ahmed M E S, Orabi M, AbdelRahim O M 2013 IET Power Electron. 6 1812

    [19]

    Cecati C, Ciancetta F, Siano P 2010 IEEE Trans. Ind. Electron. 57 4115

    [20]

    Chen L, Amirahmadi A, Zhang Q, Kutkut N 2014 IEEE Trans. Power Electron. 29 3881

    [21]

    Yang B, Li W H, Zhao Y, He X N 2010 IEEE Trans. Power Electron. 25 992

    [22]

    Chan F, Calleja H 2011 IEEE Trans. Ind. Electron. 58 2683

    [23]

    Malik O, Havel P 2014 IEEE Trans. Sustain. Energy 5 673

    [24]

    Xiao H, Xie S 2012 IEEE Trans. Power Electron. 5 899

    [25]

    Liu H C, Li F, Su Z X, Sun L X 2013 Chin. Phys. B 22 110501

  • [1] 华志豪, 郭琴, 樊碧璇, 谢旻. 回音壁式耦合光力学系统中的混沌现象.  , 2023, 72(14): 144203. doi: 10.7498/aps.72.20222407
    [2] 赵武, 张鸿斌, 孙超凡, 黄丹, 范俊锴. 受垂直激励和水平约束的单摆系统亚谐共振分岔与混沌.  , 2021, 70(24): 240202. doi: 10.7498/aps.70.20210953
    [3] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性.  , 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [4] 李爽, 李倩, 李佼瑞. Duffing系统随机相位抑制混沌与随机共振并存现象的机理研究.  , 2015, 64(10): 100501. doi: 10.7498/aps.64.100501
    [5] 张妩帆, 赵强. 太阳强迫厄尔尼诺/南方涛动充电振子模型的Hopf分岔与混沌.  , 2014, 63(21): 210201. doi: 10.7498/aps.63.210201
    [6] 侯东晓, 赵红旭, 刘彬. 一类含Mathieu-Duffing振子的相对转动系统的分岔和混沌.  , 2013, 62(23): 234501. doi: 10.7498/aps.62.234501
    [7] 刘洪臣, 王云, 苏振霞. 单相三电平H桥逆变器分岔现象的研究.  , 2013, 62(24): 240506. doi: 10.7498/aps.62.240506
    [8] 古华光, 惠磊, 贾冰. 一类位于加周期分岔中的貌似混沌的随机神经放电节律的识别.  , 2012, 61(8): 080504. doi: 10.7498/aps.61.080504
    [9] 李海滨, 王博华, 张志强, 刘爽, 李延树. 一类非线性相对转动系统的组合共振分岔与混沌.  , 2012, 61(9): 094501. doi: 10.7498/aps.61.094501
    [10] 王敩青, 戴栋, 郝艳捧, 李立浧. 大气压氦气介质阻挡放电倍周期分岔及混沌现象的实验验证.  , 2012, 61(23): 230504. doi: 10.7498/aps.61.230504
    [11] 刘诗序, 关宏志, 严海. 网络交通流动态演化的混沌现象及其控制.  , 2012, 61(9): 090506. doi: 10.7498/aps.61.090506
    [12] 姜海波, 张丽萍, 陈章耀, 毕勤胜. 脉冲作用下Chen系统的非光滑分岔分析.  , 2012, 61(8): 080505. doi: 10.7498/aps.61.080505
    [13] 张立森, 蔡理, 冯朝文. 线性延时反馈Josephson结的Hopf分岔和混沌化.  , 2011, 60(6): 060306. doi: 10.7498/aps.60.060306
    [14] 柳宁, 李俊峰, 王天舒. 双足模型步行中的倍周期步态和混沌步态现象.  , 2009, 58(6): 3772-3779. doi: 10.7498/aps.58.3772
    [15] 刘越, 张巍, 冯雪, 刘小明. 损耗调制型掺铒光纤环形激光器混沌现象的实验研究.  , 2009, 58(5): 2971-2976. doi: 10.7498/aps.58.2971
    [16] 张 青, 王杰智, 陈增强, 袁著祉. 共轭Chen混沌系统的分岔分析及基于该系统的超混沌生成研究.  , 2008, 57(4): 2092-2099. doi: 10.7498/aps.57.2092
    [17] 马西奎, 杨 梅, 邹建龙, 王玲桃. 一种时延范德波尔电磁系统中的复杂行为(Ⅰ)——分岔与混沌现象.  , 2006, 55(11): 5648-5656. doi: 10.7498/aps.55.5648
    [18] 巩华荣, 宫玉彬, 唐昌建, 王文祥, 魏彦玉, 黄民智. 微波管中离子张弛振荡的混沌现象.  , 2005, 54(1): 159-163. doi: 10.7498/aps.54.159
    [19] 李 明, 马西奎, 戴 栋, 张 浩. 基于符号序列描述的一类分段光滑系统中分岔现象与混沌分析.  , 2005, 54(3): 1084-1091. doi: 10.7498/aps.54.1084
    [20] 戴 栋, 马西奎, 李小峰. 一类具有两个边界的分段光滑系统中边界碰撞分岔现象及混沌.  , 2003, 52(11): 2729-2736. doi: 10.7498/aps.52.2729
计量
  • 文章访问数:  6927
  • PDF下载量:  412
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-12
  • 修回日期:  2015-02-05
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map