搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轮烯衍生物电子结构及三阶非线性光学性质的理论研究

陈盈盈 韩奎 李海鹏 李明雪 唐刚 沈晓鹏

引用本文:
Citation:

轮烯衍生物电子结构及三阶非线性光学性质的理论研究

陈盈盈, 韩奎, 李海鹏, 李明雪, 唐刚, 沈晓鹏

Electronic structures and second hyperpolarizabilities of annulenes derivatives

Chen Ying-Ying, Han Kui, Li Hai-Peng, Li Ming-Xue, Tang Gang, Shen Xiao-Peng
PDF
导出引用
  • 苯轮烯衍生物具有良好的非线性光学性质. 运用密度泛函理论在不同理论水平和不同基组下计算了轮烯衍生物的静态极化率α和静态第二超极化率γ. 采用含时密度泛函TD-B3LYP方法计算了轮烯分子的紫外吸收光谱. 结果发现: 弥散函数对静态线性极化率α和第二超极化率γ 的计算结果都有显著的影响; 共轭体系的大小和引入的推拉电子基团可以调节轮烯衍生物的第二超极化率. 添加推拉电子基团后不仅能得到更高的非线性光学系数, 也能保证有较好的透光性能, 表明轮稀分子兼具有较高的三阶非线性光学响应和在可见光波段具有良好的透光性的特性. 此外, 采用CAM-B3LYP方法计算了分子1-1和分子2-2的动态(超)极化率. 计算结果表明: 在近红外区, 随着入射光频率的增大, α (ω; ω), γ (-ω; ω, 0, 0) 和γ (-2ω; ω, ω, 0) 都随之增大, 出现近共振增强效应; 在远离共振条件下, α (ω; ω), γ (-ω; ω, 0, 0) 和γ (-2ω; ω, ω, 0) 变化平缓.
    Organic nonlinear optical materials have attracted considerable attention in recent years because of their potential applications in photonic devices and optical information processing. Recent studies have shown that annulene derivatives exhibit good second-order nonlinear optical properties, but their third-order nonlinear optical properties are studied little. In this paper, the values of molecular static linear polarizability α and second hyperpolarizability γ of substituted annulenes have been investigated with different levels of HF, B3LYP, BHandHLYP and CAM-B3LYP at different basis sets, respectively. Their ultraviolet spectra have also been calculated by using the TD-B3LYP method. It is found that the quality of the basis set is important for the hyperpolarizability calculations, and diffuse functions are important to obtain accurate results for the second hyperpolarizability. We also study the structure-optical property relationship for annulene. It is found that annulene molecular structure has a significant influence on third-order nonlinear optical response. Increasing the conjugation length and introducing push-pull electronic groups can enhance the second hyperpolarizability. But the introduction of push-pull electronic groups can enhance the hyperpolarizability more remarkably than increasing the conjugation length dose, which may be due to the fact that the introduction of push-pull electronic groups can provide a large number of polarizable electrons whereas increasing the conjugation length can only enhance the electron delocalization. Meanwhile the push-pull electronic group substituted annulenes can also exhibit high transparency in visible region. Thus, this work has a good reference for designing nonlinear optical material with high, nonlinear optical coefficient and good transparency. In addition, for the same push-pull electronic groups, the higher conjugation degree and the longer πup -conjugated bridge result in the decrease of HOMO-LUMO energy gap and transition energy which benefits the enhancement of nonlinear optical response. Our results demonstrate that annulene derivative shows both high transparency and large second hyperpolarizability, and thus becomes a promising candidate for third-order nonlinear optical material. In addition, the dynamic (hyper) polarizabilities of considered annulene molecules are calculated by using CAM-B3LYP method. It is found that in near-infrared region, with the increase of frequency of incident light, α (ω; ω), γ (-ω; ω, 0, 0) and γ (-2ω; ω, ω, 0) are all increased, and the near-resonance enhancement effect occurs. Under the condition of far resonance, α (ω; ω), γ (-ω; ω, 0, 0) and γ (-2ω; ω, ω, 0) change little. This dispersion effect may be helpful for the experimental study and applications as well.
    • 基金项目: 国家自然科学基金(批准号:61372048,11347123)和中央高校基本科研业务费(批准号:2013XK04)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372048, 11347123) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2013XK04).
    [1]

    Ye C, Zyss J 1996 Theory and Practice of Nonlinear Optical Molecules (Beijing: Chemical Industry Press) pp1-3 (in Chinaese) [叶成, 习斯 J 1996 分子非线性光学的理论与实践 (北京: 化学工业出版社) 第1-3页]

    [2]

    Zhu J, L C G, Hong X S, Cui Y P 2010 Acta Phys. Sin. 59 2850 (in Chinese) [朱菁, 吕昌贵, 洪旭升, 崔一平 2010 59 2850]

    [3]

    Wang Y D, Meng Y, Wang S L, An Z 2010 Chin. Phys. B 19 127105

    [4]

    Manjunatha K B, Dileep R, Umesh G, Satyanarayan M N, Ramachandra B B 2014 Opt. Mater. 36 1054

    [5]

    Woodford J N, Wang C H, Asato A E, Liu R S 1999 J. Chem. Phys. 111 4621

    [6]

    Takimoto Y, Otani M, Sugino O 2010 Phys. Rev. B 81 153405

    [7]

    Li H P, Han K, Wang Q 2004 Acta Phys. -Chim. Sin. 20 806 (in Chinese) [李海鹏, 韩奎, 王群 2004 物理化学学报 20 806]

    [8]

    Hales J M, Matichak J, Barlow S, Ohira S, Yesudas K, Brédas J, Perry J W, Marder S R 2010 Science 327 1485

    [9]

    Scarpaci A, Nantalaksakul A, Hales J M, Matichak J D, Barlow S, Rumi M, Perry J W, Marder S R 2012 Chem. Mater. 24 1606

    [10]

    Li H P, Shen X P, Han K, Tang G, Zhang Z H 2013 Comput. Theor. Chem. 1023 95

    [11]

    Xiang H, Tian Z Y, Wang S F, Wang Z W, Li Z, Yang H, Yao J N, Gong Q H 2008 Chin. Phys. B 17 2535

    [12]

    Wu W, Li C, Yu G, Liu Y, Ye C, Qin J, Li Z 2012 Chem. Eur. J. 18 11019

    [13]

    Liu Z Y 2007 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese) [刘泽玉 2007 博士学位论文(南京: 南京大学)]

    [14]

    Li M X, Han K, Li H P, Huang Z M, Zhong Q, Tong X, Wu Q H 2010 Acta Phys. Sin. 59 1809 (in Chinese) [李明雪, 韩奎, 李海鹏, 黄志敏, 钟琪, 童星, 吴琼华 2010 59 1809]

    [15]

    Wang J Y, Zhou J, Chen D L, Jian P M, Zhang G L 2000 Chem. J. Chin. Univ. 21 3703 (in Chinese) [王进义, 周晶, 程东亮, 菅盘铭, 张国林 2000 高等学校化学学报 21 3703]

    [16]

    Lu J, Yang B Q, Bai Y J 2002 Synthetic Commun. 32 3703

    [17]

    Islam M M, Bhuiyan M D H, Bredow T, Try A C 2011 Comput. Theor. Chem. 967 165

    [18]

    Pang H W 2014 Gong Dong Chem. Ind. 41 13 (in Chinese) [庞宏伟 2014 广东化工 41 13]

    [19]

    Ge Y, Han K, Zhou F, Ju F L 2012 J. At. Mol. Phys. 291 1 (in Chinese) [葛阳, 韩奎, 周菲, 居发亮 2012 原子与分子 291 1]

    [20]

    Medved M, Champagne B, Noga I, Perpece E A 2004 J. Comput. Meth. Sci. Eng. 4 251

    [21]

    Panja N, Ghanty T K, Nandle P K 2010 Theor. Chem. Acc 126 323

    [22]

    Yanai T, Tew P D, Handy N C 2004 Chem. Phys. Lett. 393 51

    [23]

    Sun T, Wang Y B 2011 Acta Phys. -Chim. Sin. 27 2553 (in Chinese) [孙涛, 王一波 2011 物理化学学报 27 2553]

    [24]

    Li Y D, Li Z L, Leng J C, Li W, Wang C K 2011 Acta Phys. Sin. 60 073101 (in Chinese) [李英德, 李宗良, 冷建材, 李伟, 王传奎 2011 60 073101]

    [25]

    Wang C K, Wang Y H, Su Y, Lou Y 2003 J. Chem. Phys. 119 4409

    [26]

    Zhang C Z, Lu C, Zhu J, Wang C Y, Lu G Y, Wang C S, Wu D L, Liu F, Cui Y P 2008 Chem. Mater. 20 4628

    [27]

    Han K, Li H P, Wu Y X, Tang G, Li M X, Zhong Q, Huang Z M 2009 J. Mol. Struct.: Theochem 908 69

    [28]

    Maroulis G 2008 J. Chem. Phys. 129 044314

    [29]

    Marcano E, Squitieri E, Murgich J, Soscún H 2012 Comput. Theor. Chem. 985 72

    [30]

    Li H P, Han K, Shen X P, Lu Z P, Huang Z M, Wang H T, Zhang Z H, Bai L 2006 J. Mol. Struct. (Theochem.) 767 113

  • [1]

    Ye C, Zyss J 1996 Theory and Practice of Nonlinear Optical Molecules (Beijing: Chemical Industry Press) pp1-3 (in Chinaese) [叶成, 习斯 J 1996 分子非线性光学的理论与实践 (北京: 化学工业出版社) 第1-3页]

    [2]

    Zhu J, L C G, Hong X S, Cui Y P 2010 Acta Phys. Sin. 59 2850 (in Chinese) [朱菁, 吕昌贵, 洪旭升, 崔一平 2010 59 2850]

    [3]

    Wang Y D, Meng Y, Wang S L, An Z 2010 Chin. Phys. B 19 127105

    [4]

    Manjunatha K B, Dileep R, Umesh G, Satyanarayan M N, Ramachandra B B 2014 Opt. Mater. 36 1054

    [5]

    Woodford J N, Wang C H, Asato A E, Liu R S 1999 J. Chem. Phys. 111 4621

    [6]

    Takimoto Y, Otani M, Sugino O 2010 Phys. Rev. B 81 153405

    [7]

    Li H P, Han K, Wang Q 2004 Acta Phys. -Chim. Sin. 20 806 (in Chinese) [李海鹏, 韩奎, 王群 2004 物理化学学报 20 806]

    [8]

    Hales J M, Matichak J, Barlow S, Ohira S, Yesudas K, Brédas J, Perry J W, Marder S R 2010 Science 327 1485

    [9]

    Scarpaci A, Nantalaksakul A, Hales J M, Matichak J D, Barlow S, Rumi M, Perry J W, Marder S R 2012 Chem. Mater. 24 1606

    [10]

    Li H P, Shen X P, Han K, Tang G, Zhang Z H 2013 Comput. Theor. Chem. 1023 95

    [11]

    Xiang H, Tian Z Y, Wang S F, Wang Z W, Li Z, Yang H, Yao J N, Gong Q H 2008 Chin. Phys. B 17 2535

    [12]

    Wu W, Li C, Yu G, Liu Y, Ye C, Qin J, Li Z 2012 Chem. Eur. J. 18 11019

    [13]

    Liu Z Y 2007 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese) [刘泽玉 2007 博士学位论文(南京: 南京大学)]

    [14]

    Li M X, Han K, Li H P, Huang Z M, Zhong Q, Tong X, Wu Q H 2010 Acta Phys. Sin. 59 1809 (in Chinese) [李明雪, 韩奎, 李海鹏, 黄志敏, 钟琪, 童星, 吴琼华 2010 59 1809]

    [15]

    Wang J Y, Zhou J, Chen D L, Jian P M, Zhang G L 2000 Chem. J. Chin. Univ. 21 3703 (in Chinese) [王进义, 周晶, 程东亮, 菅盘铭, 张国林 2000 高等学校化学学报 21 3703]

    [16]

    Lu J, Yang B Q, Bai Y J 2002 Synthetic Commun. 32 3703

    [17]

    Islam M M, Bhuiyan M D H, Bredow T, Try A C 2011 Comput. Theor. Chem. 967 165

    [18]

    Pang H W 2014 Gong Dong Chem. Ind. 41 13 (in Chinese) [庞宏伟 2014 广东化工 41 13]

    [19]

    Ge Y, Han K, Zhou F, Ju F L 2012 J. At. Mol. Phys. 291 1 (in Chinese) [葛阳, 韩奎, 周菲, 居发亮 2012 原子与分子 291 1]

    [20]

    Medved M, Champagne B, Noga I, Perpece E A 2004 J. Comput. Meth. Sci. Eng. 4 251

    [21]

    Panja N, Ghanty T K, Nandle P K 2010 Theor. Chem. Acc 126 323

    [22]

    Yanai T, Tew P D, Handy N C 2004 Chem. Phys. Lett. 393 51

    [23]

    Sun T, Wang Y B 2011 Acta Phys. -Chim. Sin. 27 2553 (in Chinese) [孙涛, 王一波 2011 物理化学学报 27 2553]

    [24]

    Li Y D, Li Z L, Leng J C, Li W, Wang C K 2011 Acta Phys. Sin. 60 073101 (in Chinese) [李英德, 李宗良, 冷建材, 李伟, 王传奎 2011 60 073101]

    [25]

    Wang C K, Wang Y H, Su Y, Lou Y 2003 J. Chem. Phys. 119 4409

    [26]

    Zhang C Z, Lu C, Zhu J, Wang C Y, Lu G Y, Wang C S, Wu D L, Liu F, Cui Y P 2008 Chem. Mater. 20 4628

    [27]

    Han K, Li H P, Wu Y X, Tang G, Li M X, Zhong Q, Huang Z M 2009 J. Mol. Struct.: Theochem 908 69

    [28]

    Maroulis G 2008 J. Chem. Phys. 129 044314

    [29]

    Marcano E, Squitieri E, Murgich J, Soscún H 2012 Comput. Theor. Chem. 985 72

    [30]

    Li H P, Han K, Shen X P, Lu Z P, Huang Z M, Wang H T, Zhang Z H, Bai L 2006 J. Mol. Struct. (Theochem.) 767 113

  • [1] 刘志伟, 张斌, 陈彧. 二维纳米材料及其衍生物在激光防护领域中的应用.  , 2020, 69(18): 184201. doi: 10.7498/aps.69.20200313
    [2] 赵珂, 宋军, 张瀚. 给体位置和数目对四苯基乙烯衍生物双光子吸收性质的影响.  , 2019, 68(18): 183101. doi: 10.7498/aps.68.20190471
    [3] 唐春梅, 王成杰, 高凤志, 张轶杰, 徐燕, 巩江峰. 碳硼富勒烯衍生物C18B2M(M=Li, Ti, Fe)的储氢性能计算研究.  , 2015, 64(9): 096103. doi: 10.7498/aps.64.096103
    [4] 武娜, 杨皎, 肖芬, 蔡灵仓, 田春玲. 固氪物态方程的关联量子化学计算.  , 2014, 63(14): 146102. doi: 10.7498/aps.63.146102
    [5] 刘军辉, 李国凤, 王渊旭. 一种芴衍生物的三光子吸收光稳幅效应及三光子吸收拟合方法研究.  , 2013, 62(1): 017801. doi: 10.7498/aps.62.017801
    [6] 蹇磊, 谭英雄, 李权, 赵可清. 吐昔烯衍生物分子的电荷传输性质.  , 2013, 62(18): 183101. doi: 10.7498/aps.62.183101
    [7] 韩奎, 李明雪, 李海鹏, 吴玉喜, 唐刚, 吴琼华, 童星, 钟琪. 二维电荷转移结构轮烯衍生物光学性质理论研究.  , 2010, 59(9): 6250-6255. doi: 10.7498/aps.59.6250
    [8] 唐春梅, 朱卫华, 邓开明. 内掺过渡金属富勒烯衍生物Ni@C20H20几何结构、成键和电磁性质的密度泛函计算研究.  , 2009, 58(7): 4567-4572. doi: 10.7498/aps.58.4567
    [9] 王 磊, 胡慧芳, 韦建卫, 曾 晖, 于滢潆, 王志勇, 张丽娟. 有机分子二苯乙烯系列衍生物第一超极化率的理论研究.  , 2008, 57(5): 2987-2993. doi: 10.7498/aps.57.2987
    [10] 张 冰, 刘智波, 陈树琪, 周文远, 臧维平, 田建国, 罗代兵, 朱志昂. 新型卟啉衍生物反饱和吸收研究.  , 2007, 56(9): 5252-5257. doi: 10.7498/aps.56.5252
    [11] 逯振平, 韩 奎, 李海鹏, 张文涛, 黄志敏, 沈晓鹏, 张兆慧, 白 磊. 4-N-甲基苯乙烯砒啶盐衍生物振动超极化率的理论研究.  , 2007, 56(10): 5843-5848. doi: 10.7498/aps.56.5843
    [12] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究.  , 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [13] 刘军辉, 毛艳丽, 马文波, 吴谊群, 韩俊鹤, 翟凤潇. 一种新的芴类衍生物的三光子吸收诱导荧光和光限幅效应研究.  , 2005, 54(11): 5173-5177. doi: 10.7498/aps.54.5173
    [14] 马文波, 吴谊群, 韩俊鹤, 顾冬红, 干福熹. 两种新型芴类衍生物的三光子吸收特性研究.  , 2005, 54(8): 3698-3702. doi: 10.7498/aps.54.3698
    [15] 赵 珂, 孙元红, 王传奎, 罗 毅, 张 献, 于晓强, 蒋民华. 1,4-二甲氧基-2,5-二乙烯基苯系列衍生物的双光子吸收截面.  , 2005, 54(6): 2662-2668. doi: 10.7498/aps.54.2662
    [16] 苏 燕, 王传奎, 王彦华, 陶丽敏. 二苯乙烯衍生物分子双光子吸收截面:官能团对称性的影响.  , 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [17] 张家明, 陆卫, 沈学础. 六卤化金属化合物晶体晶格非稳定性量子化学计算.  , 1995, 44(11): 1798-1804. doi: 10.7498/aps.44.1798
    [18] 谢仿卿, 黄明宝, 夏宇兴. ArCN三原子准分子的研究(Ⅰ)——电子态的量子化学计算.  , 1994, 43(3): 351-355. doi: 10.7498/aps.43.351
    [19] 彭周人, 杜奇石, 李丙瑞. 非晶态半导体的缺陷态化学键的量子化学研究.  , 1985, 34(4): 542-546. doi: 10.7498/aps.34.542
    [20] 严济慈, 锺盛標. 臭氧之紫外吸收光谱.  , 1933, 1(1): 38-50. doi: 10.7498/aps.1.38
计量
  • 文章访问数:  5754
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-03
  • 修回日期:  2015-01-28
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map