搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维格子神经元网络的振动共振和非线性振动共振

孙润智 汪治中 汪茂胜 张季谦

引用本文:
Citation:

二维格子神经元网络的振动共振和非线性振动共振

孙润智, 汪治中, 汪茂胜, 张季谦

Vibrational resonance and nonlinear vibrational resonance in square-lattice neural system

Sun Run-Zhi, Wang Zhi-Zhong, Wang Mao-Sheng, Zhang Ji-Qian
PDF
导出引用
  • 本文采用数值模拟的方法, 在通过电突触耦合或化学突触耦合的二维格子神经元网络中, 研究了FitzHugh-Nagumo神经元受到双频信号输入时神经元网络对低频信号的响应特性. 结果表明:当固定受到双频输入信号的神经元在体系中所占的比例且FitzHugh-Nagumo神经元参数处于可激发区域时双频信号中的高频部分可诱导出动作电位产生, 而且随着高频输入信号强度的增加, 神经元网络对低频输入信号响应先增大后减小, 出现了极大值, 即发生了振动共振现象. 另外本文还研究了神经元网络对低频输入信号的二次谐波的响应, 同样发现了非线性振动共振现象, 并且体系对低频信号的响应随着其频率ω 的增加也产生共振现象, 即发生了双共振现象. 上述共振现象在以电突触耦合的二维格子神经元网络中和以化学突触耦合的二维格子神经元网络中都可以观察到. 当固定双频输入信号中高频输入信号强度时, 随着受到双频输入信号的神经元在体系中所占比例的变化, 电突触耦合的二维格子神经元网络对低频输入信号的响应与化学突触耦合的二维格子神经元网络对低频输入信号的响应相比有很大的不同.
    Response characteristics of FitzHugh-Nagumo neurons to low frequency signal have been investigated by numerical simulation. Neurons are arranged on a square-lattice and are subjected to two frequency signals. Results show that, vibrational resonance of the membrane potential can be induced by varying the amplitude of the high-frequency signal, when the control parameter is selected in the excitable region. In addition, the responses of neurons to higher harmonics of low-frequency signal have been studied, and nonlinear vibrational resonances are also found. With the increase of frequency in the low-frequency signal, the response of the system to low-frequency signal can resonate. Thus, the double resonance can occur by changing the frequency in low-frequency signal and the amplitude in high-frequency signal. Moreover, effects of electrical synapses and chemical synapses on vibrational resonance and nonlinear vibrational resonance of the neurons have also been studied. Effect of the number of neurons, which are subjected to two frequency signals in the square-lattice, on the response characteristic of the system is also studied. It is found that the response characteristic of the electrical coupling neurons is quite different from that of chemical coupling neurons.
    • 基金项目: 国家自然科学基金(批准号:21103002)和安徽省自然科研基金(批准号:1508085MA15)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21103002), and the Natural Science Fund of Anhui Province, China (Grant No. 1508085MA15).
    [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A 14 L453

    [2]

    Wellens T, Shatokhin V, Buchleitner A 2004 Rep. Prog. Phys. 67 45

    [3]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [4]

    Wang M S 2009 Acta Phys. Sin. 57 4667 (in Chinese) [汪茂胜 2009 57 4667]

    [5]

    Wang B, Sun Y Q, Tang X D 2013 Chin. Phys. B 22 010501

    [6]

    Guo F, Cheng X F, Li S F, Cao W, Li H 2012 Chin. Phys. B 21 080502

    [7]

    Fauve S, Hesot F 1983 Phys. Lett. A 97 5

    [8]

    Marino F, Giudici M, Barland S 2002 Phys. Rev. Lett. 88 040601

    [9]

    Pikovsky A, Kurths J 1997 Phys. Rev. Lett. 78 775

    [10]

    Jiang Y, Zhong S, Xin H 2000 J. Phys. Chem. A 104 8521

    [11]

    Chizhevsky V N, Giovanni G 2006 Phys. Rev. E. 73 022103

    [12]

    Chizhevsky V N, Giovanni G 2008 Phys. Rev. E 77 051126

    [13]

    Yu H T, Wang J 2013 Acta Phys. Sin. 62 170511 (in Chinese) [于海涛, 王江 2013 62 170511]

    [14]

    Ullner E, Zaikin A, García-Ojalvo J, Báscones R, Kurths J 2003 Physics Letters A 312 348

    [15]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 116 473

    [16]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [17]

    FitzHugh R 1961 Biophys. J. 1 445

    [18]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [19]

    Hindmash L J, Rose M R 1984 Proc. R. Soc. Lond. B 221 87

    [20]

    WangM S, HouZ H, Xing, H W 2006 Chin. Phys. Lett. 23 2666

    [21]

    Deng B, Wang J, Wei X L 2009 Chaos 19 013117

    [22]

    Men C, Wang J, Qin Y M, Deng B, Tsang K M, Chan W L 2012 Chaos 22 013104

    [23]

    Gammaitoni L, Hänggi P, Jung P, Marachesoni F 1998 Rev. Mod. Phys. 70 223

    [24]

    Zaikin A A, García-Ojalvo J, Schimansky-Geier L, Kurths J 2001 Phys. Rev. Lett. 88 010601

  • [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A 14 L453

    [2]

    Wellens T, Shatokhin V, Buchleitner A 2004 Rep. Prog. Phys. 67 45

    [3]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [4]

    Wang M S 2009 Acta Phys. Sin. 57 4667 (in Chinese) [汪茂胜 2009 57 4667]

    [5]

    Wang B, Sun Y Q, Tang X D 2013 Chin. Phys. B 22 010501

    [6]

    Guo F, Cheng X F, Li S F, Cao W, Li H 2012 Chin. Phys. B 21 080502

    [7]

    Fauve S, Hesot F 1983 Phys. Lett. A 97 5

    [8]

    Marino F, Giudici M, Barland S 2002 Phys. Rev. Lett. 88 040601

    [9]

    Pikovsky A, Kurths J 1997 Phys. Rev. Lett. 78 775

    [10]

    Jiang Y, Zhong S, Xin H 2000 J. Phys. Chem. A 104 8521

    [11]

    Chizhevsky V N, Giovanni G 2006 Phys. Rev. E. 73 022103

    [12]

    Chizhevsky V N, Giovanni G 2008 Phys. Rev. E 77 051126

    [13]

    Yu H T, Wang J 2013 Acta Phys. Sin. 62 170511 (in Chinese) [于海涛, 王江 2013 62 170511]

    [14]

    Ullner E, Zaikin A, García-Ojalvo J, Báscones R, Kurths J 2003 Physics Letters A 312 348

    [15]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 116 473

    [16]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [17]

    FitzHugh R 1961 Biophys. J. 1 445

    [18]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [19]

    Hindmash L J, Rose M R 1984 Proc. R. Soc. Lond. B 221 87

    [20]

    WangM S, HouZ H, Xing, H W 2006 Chin. Phys. Lett. 23 2666

    [21]

    Deng B, Wang J, Wei X L 2009 Chaos 19 013117

    [22]

    Men C, Wang J, Qin Y M, Deng B, Tsang K M, Chan W L 2012 Chaos 22 013104

    [23]

    Gammaitoni L, Hänggi P, Jung P, Marachesoni F 1998 Rev. Mod. Phys. 70 223

    [24]

    Zaikin A A, García-Ojalvo J, Schimansky-Geier L, Kurths J 2001 Phys. Rev. Lett. 88 010601

  • [1] 张秀芳, 马军, 徐莹, 任国栋. 光电管耦合FitzHugh-Nagumo神经元的同步.  , 2021, 70(9): 090502. doi: 10.7498/aps.70.20201953
    [2] 杨建华, 马强, 吴呈锦, 刘后广. 分数阶双稳系统中的非周期振动共振.  , 2018, 67(5): 054501. doi: 10.7498/aps.67.20172046
    [3] 焦尚彬, 孙迪, 刘丁, 谢国, 吴亚丽, 张青. 稳定噪声下一类周期势系统的振动共振.  , 2017, 66(10): 100501. doi: 10.7498/aps.66.100501
    [4] 杨秀妮, 杨云峰. 具有时滞反馈的非对称双稳系统中的振动共振研究.  , 2015, 64(7): 070507. doi: 10.7498/aps.64.070507
    [5] 张路, 谢天婷, 罗懋康. 双频信号驱动含分数阶内、外阻尼Duffing振子的振动共振.  , 2014, 63(1): 010506. doi: 10.7498/aps.63.010506
    [6] 于海涛, 王江. 基于反演自适应动态滑模的FitzHugh-Nagumo神经元混沌同步控制.  , 2013, 62(17): 170511. doi: 10.7498/aps.62.170511
    [7] 杨建华, 刘后广, 程刚. 一类五次方振子系统的叉形分叉及振动共振研究.  , 2013, 62(18): 180503. doi: 10.7498/aps.62.180503
    [8] 张静静, 靳艳飞. 非高斯噪声激励下FitzHugh-Nagumo神经元系统的随机共振.  , 2012, 61(13): 130502. doi: 10.7498/aps.61.130502
    [9] 杨建华, 刘先斌. 线性时滞反馈引起的周期性振动共振分析.  , 2012, 61(1): 010505. doi: 10.7498/aps.61.010505
    [10] 吴钦宽. 输电线非线性振动问题的同伦映射近似解.  , 2011, 60(6): 068802. doi: 10.7498/aps.60.068802
    [11] 陈赵江, 张淑仪, 郑凯. 高功率超声脉冲激励下金属板的非线性振动现象研究.  , 2010, 59(6): 4071-4083. doi: 10.7498/aps.59.4071
    [12] 刘志宏, 周玉荣, 张安英, 庞小峰. 色关联噪声驱动下非线性神经元模型的相干共振.  , 2010, 59(2): 699-704. doi: 10.7498/aps.59.699
    [13] 宋艳丽. 简谐噪声激励下FitzHugh-Nagumo神经元的动力学行为.  , 2010, 59(4): 2334-2338. doi: 10.7498/aps.59.2334
    [14] 刘勇, 谢勇. 分数阶FitzHugh-Nagumo模型神经元的动力学特性及其同步.  , 2010, 59(3): 2147-2155. doi: 10.7498/aps.59.2147
    [15] 王宝燕, 徐伟, 邢真慈. 外界电场激励下的耦合FitzHugh-Nagumo神经元系统的放电节律研究.  , 2009, 58(9): 6590-6595. doi: 10.7498/aps.58.6590
    [16] 张琪昌, 王 炜, 何学军. 研究强非线性振动系统同宿分岔问题的规范形方法.  , 2008, 57(9): 5384-5389. doi: 10.7498/aps.57.5384
    [17] 秦卫阳, 杨永锋, 王红瑾, 任兴民. 非线性振动系统的预测同步方法研究.  , 2008, 57(4): 2068-2072. doi: 10.7498/aps.57.2068
    [18] 秦卫阳, 王红瑾, 张劲夫. 一类时变非线性振动系统的同步控制方法.  , 2007, 56(8): 4361-4365. doi: 10.7498/aps.56.4361
    [19] 林 敏, 黄咏梅. 基于振动共振的随机共振控制.  , 2007, 56(11): 6173-6177. doi: 10.7498/aps.56.6173
    [20] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象.  , 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
计量
  • 文章访问数:  6245
  • PDF下载量:  383
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-27
  • 修回日期:  2015-01-10
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map