-
研究了简谐噪声激励下的FitzHugh-Nagumo神经元模型, 其放电形式、相干共振等动力学行为均受噪声阻尼参数和频率参数的影响.选择不同的参数所得到的神经元的放电形式不同.神经元存在共振特性,对某一频率的噪声有更强的响应,在此频率参数下的峰序列更有序,出现相干共振系数的极小值.噪声的阻尼参数越大,不同的频率成分越多,神经元的响应也变得杂乱,进而导致神经元与噪声的同步变弱,峰序列相干共振系数也相应增大.
-
关键词:
- 简谐噪声 /
- FitzHugh-Nagumo神经元 /
- 相干共振 /
- 峰峰间隔
The FitzHugh-Nagumo neuron model driven by a harmonic noise is investigated, whose dynamic behaviours are influenced by the frequency and the damping parameters of noise. The spikes train varies with these two parameters changing. The FitzHugh-Nagumo neuron has resonance characteristic and exhibits stronger response to noise with a given frequency. Undernoise with this frequency parameter, the spikes train is more regular and the coefficient of coherent resonance reaches the minimum. The larger the damping parameter of the noise is, the more the different ingredients are, thus the synchronization between neuron and noise becomes more imperfect and the coefficient of coherent resonance is larger.-
Keywords:
- harmonic noise /
- FitzHugh-Nagumo neuron /
- coherence resonance /
- interspike interval
[1] [1]Lindner B, García-Ojalvo J, Neiman A, Schimansky-Geier L 2004 Phys. Rep. 392 321
[2] [2]Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2003 Phys. Lett. A 319 89
[3] [3]Song Y, Zhao T J, Liu J W 2006 Acta Phys. Sin. 55 4020 (in Chinese) [宋杨、 赵同军、 刘金伟 2006 55 4020]
[4] [4]Nozaki D, Mar D J, Grigg P, Collins J 1999 Phys. Rev. Lett. 82 2402
[5] [5]Wang C Q, Xu W, Zhang N M 2008 Acta Phys. Sin. 57 0749 (in Chinese) [王朝庆、 徐伟、 张娜敏 2008 57 0749]
[6] [6]Wu Sh G, Ren W, He K F, Huang Z Q 2001 Phys. Lett. A 279 347
[7] [7]Baltanás J P, Casado 1998 Physica D 122 231
[8] [8]Wen Z H, Hu S J, Dong X Z 2004 Chin. J. Clin. Rehabil. 8 1266 (in Chinese) [文治洪、 胡三觉、 董秀珍 2004中国临床康复 8 1266]
[9] [9]Rechardson M, Brunel N, Hakim V 2003 J. Neurophysiol. 89 2538
[10] ]Song Y L 2006 Acta Phys. Sin. 55 6482 (in Chinese) [宋艳丽 2006 55 6482]
[11] ]Bartussek R, Hnggi P, Kissner J G 1994 Europhys. Lett. 28 459
[12] ]Zhou L Y, Wang R L 2000 The Theory and Application of Nonlinear Physics (Beijing:Science Press)p150 (in Chinese)[周凌云、王瑞丽 2000 非线性物理理论及应用(北京:科学出版社) 第150页]
-
[1] [1]Lindner B, García-Ojalvo J, Neiman A, Schimansky-Geier L 2004 Phys. Rep. 392 321
[2] [2]Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2003 Phys. Lett. A 319 89
[3] [3]Song Y, Zhao T J, Liu J W 2006 Acta Phys. Sin. 55 4020 (in Chinese) [宋杨、 赵同军、 刘金伟 2006 55 4020]
[4] [4]Nozaki D, Mar D J, Grigg P, Collins J 1999 Phys. Rev. Lett. 82 2402
[5] [5]Wang C Q, Xu W, Zhang N M 2008 Acta Phys. Sin. 57 0749 (in Chinese) [王朝庆、 徐伟、 张娜敏 2008 57 0749]
[6] [6]Wu Sh G, Ren W, He K F, Huang Z Q 2001 Phys. Lett. A 279 347
[7] [7]Baltanás J P, Casado 1998 Physica D 122 231
[8] [8]Wen Z H, Hu S J, Dong X Z 2004 Chin. J. Clin. Rehabil. 8 1266 (in Chinese) [文治洪、 胡三觉、 董秀珍 2004中国临床康复 8 1266]
[9] [9]Rechardson M, Brunel N, Hakim V 2003 J. Neurophysiol. 89 2538
[10] ]Song Y L 2006 Acta Phys. Sin. 55 6482 (in Chinese) [宋艳丽 2006 55 6482]
[11] ]Bartussek R, Hnggi P, Kissner J G 1994 Europhys. Lett. 28 459
[12] ]Zhou L Y, Wang R L 2000 The Theory and Application of Nonlinear Physics (Beijing:Science Press)p150 (in Chinese)[周凌云、王瑞丽 2000 非线性物理理论及应用(北京:科学出版社) 第150页]
计量
- 文章访问数: 8578
- PDF下载量: 996
- 被引次数: 0