搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于心音窗函数的心音图形化处理方法的研究

成谢锋 李伟

引用本文:
Citation:

基于心音窗函数的心音图形化处理方法的研究

成谢锋, 李伟

Research on heart-sound graphical processing methods based on heart-sounds window function

Cheng Xie-Feng, Li Wei
PDF
导出引用
  • 心音分析与识别目前主要局限在一维信号处理方面, 为了获得心音信号更直观特征表现形式, 提高分类识别效果, 拓展心音识别研究领域, 提出了一种将心音与图像处理技术相结合、基于心音窗函数的心音纹理图特征提取与识别算法. 本文首先给出心音的模型, 定义心音时频图和心音纹理图, 然后讨论如何利用心音窗函数和短时傅里叶变换获取二维心音时频图, 并且针对心音的特点, 重点研究了心音窗函数的构造原则和实现方法, 最后通过改进的脉冲耦合神经网络模型实现了对心音纹理图的特征提取与身份识别. 仿真实验表明, 心音窗函数与传统窗函数相比较, 所获得的心音时频图具有第一、第二心音纹理更加清晰, 噪声纹理得到较好抑制的优点, 并且改进的脉冲耦合神经网络模型具有更低的计算成本, 与3种典型识别方法相比较, 呈现更高的识别率, 因而基于图像处理技术对心音进行特征提取与身份识别是一种行之有效的方法.
    Currently, the one-dimensional signal processing method for heart-sound analysis and recognition is the mainstream in researches. In order to gain more intuitive features in manifestation, to improve the effect of classification, and to endarge the heart-sound recognition field, this paper puts forward a heart-sound texture feature extraction and recognition algoriithm, which is based on heart-sound window function and the combination of heart-sound and image processing technology. Firstly, we give a heart-sound model, a definition of heart-sound time-frequency diagram, and a heart-sound texture map; we also discuss how to utilize heart-sound window function and short-time Fourier transform to obtain a two-dimensional heart-sound time-frequency diagram. After that, in the light of the characteristics of heart-sound, we mainly study the structure principle and implementation method of a heart-sound window function Finally, the heart-sound texture feature extraction and identification are realized by the improved pulse-coupled neural network model (IPCNN). Simulation experiments show that compared with the traditional window function, the heart-sound time-frequency diagram obtained using heart-sound window function has a clearer and noise well suppressed texture. Furthermore, compared with other three kinds of typical recognition methods, IPCNN has the lower computational cost and higher recognition rate. So, we can arrive at the conclusion that the method for heart-sound feature extraction and recognition based on image processing techniques is the effective one.
    • 基金项目: 国家自然科学基金(批准号: 61271334)资助的课题.
    • Funds: Project supported by the National Science Foundation of China (Grant No. 61271334).
    [1]

    Cheng X F, Ma Y, Liu C, Zhang X J, Guo Y F 2012 Sci. China Inf. Sci. 55 281

    [2]

    Phau K, Chen J F, Dat T H, Shue L 2008 Pattern Recognition 41 906

    [3]

    Liu X Y, Pei L Q, Wang Y 2011 Chin. Phys. B 20 047401

    [4]

    Schwerin B, Paliwal K 2014 Speech Communication 58 49

    [5]

    Guo X, Ding X, Lei M 2012 Acta Phys. Hungar. 99 382

    [6]

    Cheng X F, Zhang Z 2013 Acta Phys. Sin. 62 168701 (in Chinese) [成谢锋, 张正 2013 62 168701]

    [7]

    Fan J, Lv C, Zhang H 2008 J. Vibrat. Engin. 21 381 (in Chinese) [樊剑, 吕超, 张辉 2008 振动工程学报 21 381]

    [8]

    Ma Y, Cheng X F 2014 Acta Phys. Sin. 63 068703 (in Chinese) [马勇, 成谢锋 2014 63 068703]

    [9]

    Liao C J, Li X J, Liu D S 2008 Chin. J. Sci. Instrum. 29 1862 (in Chinese) [廖传军, 李学军, 刘德顺 2008 仪器仪表学报 29 1862]

    [10]

    Ma Y D, Yuan M, Qi C L, Liu Y, Liu Y J 2005 Comp. Engin. Appl. 41 81 (in Chinese) [马义德, 袁敏, 齐春亮, 刘悦, 刘映杰 2005 计算机工程与应用 41 81]

    [11]

    Liu K, Jin W B 2008 Chong Qing Univ. Posts and Telecommun. 20 217 (in Chinese) [刘琨, 金文标 2008 重庆邮电大学学报 20 217]

    [12]

    Wei L X, Zhang M, Zhong Y C, Han G 2012 Comp. Engin. Appl. 48 133 (in Chinese) [韦丽兴, 张淼, 钟映春, 韩光 2012 计算机工程与应用 48 133]

    [13]

    Lindbad T, Kinser J M (translated by Ma Y D, Zhang K, Wang Z B) 2008 Pulse Coupled Neural Network Image Processing (Beijing: Higher Education Press) pp10-29 (in Chinese) [林德布莱德T, 凯泽J M 著(马义德, 绽琨, 王兆滨译) 2008脉冲耦合神经网络图像处理(高等教育出版社)第10–29页]

    [14]

    Cheng X F, Ma Y, Tao Y W 2010 Chin. J. Sci. Instrum. 8 1712 (in Chinese) [成谢锋, 马勇, 陶冶薇 2010 仪器仪表学报 8 1712]

  • [1]

    Cheng X F, Ma Y, Liu C, Zhang X J, Guo Y F 2012 Sci. China Inf. Sci. 55 281

    [2]

    Phau K, Chen J F, Dat T H, Shue L 2008 Pattern Recognition 41 906

    [3]

    Liu X Y, Pei L Q, Wang Y 2011 Chin. Phys. B 20 047401

    [4]

    Schwerin B, Paliwal K 2014 Speech Communication 58 49

    [5]

    Guo X, Ding X, Lei M 2012 Acta Phys. Hungar. 99 382

    [6]

    Cheng X F, Zhang Z 2013 Acta Phys. Sin. 62 168701 (in Chinese) [成谢锋, 张正 2013 62 168701]

    [7]

    Fan J, Lv C, Zhang H 2008 J. Vibrat. Engin. 21 381 (in Chinese) [樊剑, 吕超, 张辉 2008 振动工程学报 21 381]

    [8]

    Ma Y, Cheng X F 2014 Acta Phys. Sin. 63 068703 (in Chinese) [马勇, 成谢锋 2014 63 068703]

    [9]

    Liao C J, Li X J, Liu D S 2008 Chin. J. Sci. Instrum. 29 1862 (in Chinese) [廖传军, 李学军, 刘德顺 2008 仪器仪表学报 29 1862]

    [10]

    Ma Y D, Yuan M, Qi C L, Liu Y, Liu Y J 2005 Comp. Engin. Appl. 41 81 (in Chinese) [马义德, 袁敏, 齐春亮, 刘悦, 刘映杰 2005 计算机工程与应用 41 81]

    [11]

    Liu K, Jin W B 2008 Chong Qing Univ. Posts and Telecommun. 20 217 (in Chinese) [刘琨, 金文标 2008 重庆邮电大学学报 20 217]

    [12]

    Wei L X, Zhang M, Zhong Y C, Han G 2012 Comp. Engin. Appl. 48 133 (in Chinese) [韦丽兴, 张淼, 钟映春, 韩光 2012 计算机工程与应用 48 133]

    [13]

    Lindbad T, Kinser J M (translated by Ma Y D, Zhang K, Wang Z B) 2008 Pulse Coupled Neural Network Image Processing (Beijing: Higher Education Press) pp10-29 (in Chinese) [林德布莱德T, 凯泽J M 著(马义德, 绽琨, 王兆滨译) 2008脉冲耦合神经网络图像处理(高等教育出版社)第10–29页]

    [14]

    Cheng X F, Ma Y, Tao Y W 2010 Chin. J. Sci. Instrum. 8 1712 (in Chinese) [成谢锋, 马勇, 陶冶薇 2010 仪器仪表学报 8 1712]

  • [1] 李茹依, 王光义, 董玉姣, 周玮. 多频正弦混沌细胞神经网络及其复杂动力学特性.  , 2020, 69(24): 240501. doi: 10.7498/aps.69.20200725
    [2] 成谢锋, 戴世诚, 赵鹏军. 基于心音信号的一种血压评估方法.  , 2020, 69(14): 148701. doi: 10.7498/aps.69.20200254
    [3] 黄志精, 李倩昀, 白婧, 唐国宁. 在具有排斥耦合的神经元网络中有序斑图的熵测量.  , 2019, 68(11): 110503. doi: 10.7498/aps.68.20190231
    [4] 郭业才, 周林锋. 基于脉冲耦合神经网络和图像熵的各向异性扩散模型研究.  , 2015, 64(19): 194204. doi: 10.7498/aps.64.194204
    [5] 魏德志, 陈福集, 郑小雪. 基于混沌理论和改进径向基函数神经网络的网络舆情预测方法.  , 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [6] 朱霖河, 赵洪涌. 时滞惯性神经网络的稳定性和分岔控制.  , 2014, 63(9): 090203. doi: 10.7498/aps.63.090203
    [7] 曾喆昭. 不确定混沌系统的径向基函数神经网络反馈补偿控制.  , 2013, 62(3): 030504. doi: 10.7498/aps.62.030504
    [8] 成谢锋, 张正. 一种双正交心音小波的构造方法.  , 2013, 62(16): 168701. doi: 10.7498/aps.62.168701
    [9] 李承, 石丹, 邹云屏. 一种具有正弦基函数权值的反馈型神经网络模型.  , 2012, 61(7): 070701. doi: 10.7498/aps.61.070701
    [10] 武浩, 朱拓, 孔艳, 陈卫, 杨建磊. 基于径向基函数神经网络的荧光光谱技术在菌种识别中的应用.  , 2010, 59(4): 2396-2400. doi: 10.7498/aps.59.2396
    [11] 吴然超. 时滞离散神经网络的同步控制.  , 2009, 58(1): 139-142. doi: 10.7498/aps.58.139
    [12] 贺 群, 徐 伟, 李 爽, 肖玉柱. 图胞映射的一种改进方法.  , 2008, 57(2): 743-748. doi: 10.7498/aps.57.743
    [13] 楼旭阳, 崔宝同. 混沌时滞神经网络系统的反同步.  , 2008, 57(4): 2060-2067. doi: 10.7498/aps.57.2060
    [14] 丁 刚, 钟诗胜. 基于时变阈值过程神经网络的太阳黑子数预测.  , 2007, 56(2): 1224-1230. doi: 10.7498/aps.56.1224
    [15] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响.  , 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [16] 刘光杰, 单 梁, 戴跃伟, 孙金生, 王执铨. 基于混沌神经网络的单向Hash函数.  , 2006, 55(11): 5688-5693. doi: 10.7498/aps.55.5688
    [17] 王占山, 张化光. 时滞递归神经网络中神经抑制的作用.  , 2006, 55(11): 5674-5680. doi: 10.7498/aps.55.5674
    [18] 司马文霞, 刘 凡, 孙才新, 廖瑞金, 杨 庆. 基于改进的径向基函数神经网络的铁磁谐振系统混沌控制.  , 2006, 55(11): 5714-5720. doi: 10.7498/aps.55.5714
    [19] 郭会军, 刘君华. 基于径向基函数神经网络的Lorenz混沌系统滑模控制.  , 2004, 53(12): 4080-4086. doi: 10.7498/aps.53.4080
    [20] 刘 丁, 任海鹏, 孔志强. 基于径向基函数神经网络的未知模型混沌系统控制.  , 2003, 52(3): 531-535. doi: 10.7498/aps.52.531
计量
  • 文章访问数:  6042
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-27
  • 修回日期:  2014-09-24
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map