搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米线接触构型相关的双重负微分电阻与整流效应

李永辉 闫强 周丽萍 韩琴

引用本文:
Citation:

金纳米线接触构型相关的双重负微分电阻与整流效应

李永辉, 闫强, 周丽萍, 韩琴

Gold nanowire tip-contact-related negative differential resistance twice and the rectification effects

Li Yong-Hui, Yan Qiang, Zhou Li-Ping, Han Qin
PDF
导出引用
  • 运用第一性原理密度泛函理论(DFT)和非平衡格林函数(NEGF)方法, 研究了[111]Au纳米线与1, 4-二硫苯酚(DTB)构成的分子结的电子输运性质. 构建并优化不同的Au-DTB接触构型, 计算发现: 尖端顶位构型最利于电流输运; 非对称构型大多具有很好的整流特性(最大整流比为25.6); 部分结构出现双重负微分电阻(NDR)效应. 分析表明, 整流效应主要源于非对称接触构型两端S-Au键的稳定性差别; 尖端金原子与硫原子的耦合能级中, 近费米面的能级对低压区电子传输起主要作用; 电压增大, 离费米面较远的能级对输运起主导作用, DTB的本征能级也逐渐参与, 这一转变致使电流出现两峰一谷的双重NDR效应.
    Electron transport properties of molecular junctions formed by 1, 4-dithiolbenzene(DTB) coupled to [1,1,1] Au nanowires are investigated by using the method of non-equilibrium Green's functions based on first-principle density functional theory. Different S-Au contact configurations are constructed and optimized. The junction with tip-type Au electrode top binding to a thio (S) atom is illustrated by the best configuration for electron transport. Juntions with asymmetric electrode-DTB contact show excellent rectifying performance (the largest rectification ratio being 25.6). Other junctions display negative differential resistance (NDR) effect twice. Analysis shows that the rectifying effect may originate from the difference between the stabilities of S-Au contact modes at both sides. Molecular orbitals including the tip Au atoms are calculated. In low bias region, the orbitals near the Fermi energy dominate the electrons transmission; while, as the bias increases, those apart from the Fermi energy contribute to the transport, along with the DTB eigen-level. During the whole process, the locations and amplitude of transmission vary with bias voltage and I/V curves show two peaks, resulting in twice-NDR effect.
    • 基金项目: 国家自然科学基金(批准号:11274238, 11104197)、江苏省高校“青蓝工程”项目和国家级大学生创新创业训练计划(批注号: 201310285016Z)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274238, 11104197), and the Qing Lan Project of Jiangsu Higher Education institutions, National Undergraduate Innovation and Entrepreneurship Training Projects, China (Grant No. 201310285016Z).
    [1]

    Avirm A, Ratner M A 1974 Chem. Phys. Lett. 29 277

    [2]

    Fu X X, Zhang L X, Li Z L, Wang C K 2013 Chin. Phys. B 22 028504

    [3]

    Zhao P, Liu D S 2012 Chin. Phys. Lett. 29 047302

    [4]

    Ren H, Liang W, Zhao P, Liu D S 2012 Chin. Phys. Lett. 29 077301

    [5]

    Yao Z, Postma W C, Balent S L, Dekker C 1999 Nature 402 273

    [6]

    Metzger R M, Chen B, Hopfner U, Lakshmikantham M V, Vuillaume D, Tsuyoshi K, Wu X, Hiroki T, Terry V H, Hiromi S, Jeffrey W B, Christina H, Michael P C, Brehmer B, Geoffrey J A J. 1997 J. Am. Chem. Soc. 119 10455

    [7]

    Ouyang M, Awschalom D D 2003 Science 301 1074

    [8]

    Liu Y, He J, Chan M S, Du C X, Ye Y, Zhao W, Wu W, Deng W L, Wang W P 2014 Chin. Phys. B 23 097102

    [9]

    Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, A bruna H D, McEuen P L, Ralph D C 2002 Nature 417 722

    [10]

    Liang W J, Shores M P, Bockrath M, Long J R, Park H 2002 Nature 417 725

    [11]

    Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G, Zhu Q S 2005 Science 309 1542

    [12]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003

    [13]

    Chen I W P, Tseng W H, Gu M W, Su L C, Hsu C H, Chang W H, Chen C H 2013 , Angew. Chem. Int. Ed. 52 2449

    [14]

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501 (in Chinese) [刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 63 068501]

    [15]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518

    [16]

    Tsua A, Osuks A 2001 Science 293 79

    [17]

    Reimers J R, Hall L E, Cmssley M J, Hush N S 1999 J. Phys. Chem. A 103 4385

    [18]

    Hou S M, Tao C G, Liu H W, Zhao X Y, Liu W M, Xue Z Q 2001 Acta Phys. Sin. 50 0223 (in Chinese) [侯士敏, 陶成钢, 刘虹雯, 赵兴钰, 刘惟敏, 薛增泉 2001 50 0223]

    [19]

    Anaïs Loubat, Marianne Imperor-Clerc, Brigitte Pansu, Florian Meneau, Bertrand Raquet, Guillaume Viau, Lise-Marie Lacroix 2014 Langmuir 30 4005

    [20]

    Luca Sementa, Andrea Marini, Giovanni Barcaro, Fabio R. Negreiros, and Alessandro Fortunelli 2014 ACS Photonics 1 315

    [21]

    Ci X T, Wu B T, Song M, Chen G X, Liu Y, Wu E, Zeng H P 2014 Chin. Phys. B 23 097303

    [22]

    Wang S F, He D W, Wang Y S, Hu Y, Duan J H, Fu M, Wang W S 2014 Chin. Phys. B 23 097803

    [23]

    Hu Y B, Zhu Y, Gao H J, Guo H 2005 Phys. Rev. Lett. 95 156803

    [24]

    Evers F, Weigend F, Koentopp M 2004 Phys, Rev. B 69 235411

    [25]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J 2007 Acta Phys. Sin. 56 4884 (in Chinese) [夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰 2007 56 4884]

  • [1]

    Avirm A, Ratner M A 1974 Chem. Phys. Lett. 29 277

    [2]

    Fu X X, Zhang L X, Li Z L, Wang C K 2013 Chin. Phys. B 22 028504

    [3]

    Zhao P, Liu D S 2012 Chin. Phys. Lett. 29 047302

    [4]

    Ren H, Liang W, Zhao P, Liu D S 2012 Chin. Phys. Lett. 29 077301

    [5]

    Yao Z, Postma W C, Balent S L, Dekker C 1999 Nature 402 273

    [6]

    Metzger R M, Chen B, Hopfner U, Lakshmikantham M V, Vuillaume D, Tsuyoshi K, Wu X, Hiroki T, Terry V H, Hiromi S, Jeffrey W B, Christina H, Michael P C, Brehmer B, Geoffrey J A J. 1997 J. Am. Chem. Soc. 119 10455

    [7]

    Ouyang M, Awschalom D D 2003 Science 301 1074

    [8]

    Liu Y, He J, Chan M S, Du C X, Ye Y, Zhao W, Wu W, Deng W L, Wang W P 2014 Chin. Phys. B 23 097102

    [9]

    Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, A bruna H D, McEuen P L, Ralph D C 2002 Nature 417 722

    [10]

    Liang W J, Shores M P, Bockrath M, Long J R, Park H 2002 Nature 417 725

    [11]

    Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G, Zhu Q S 2005 Science 309 1542

    [12]

    Frei M, Aradhya S V, Hybertsen M S, Venkataraman L 2012 J. Am. Chem. Soc. 134 4003

    [13]

    Chen I W P, Tseng W H, Gu M W, Su L C, Hsu C H, Chang W H, Chen C H 2013 , Angew. Chem. Int. Ed. 52 2449

    [14]

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501 (in Chinese) [刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 63 068501]

    [15]

    Frei M, Aradhya S V, Koentopp M, Hybertsen M S, Venkataraman L 2011 Nano Lett. 11 1518

    [16]

    Tsua A, Osuks A 2001 Science 293 79

    [17]

    Reimers J R, Hall L E, Cmssley M J, Hush N S 1999 J. Phys. Chem. A 103 4385

    [18]

    Hou S M, Tao C G, Liu H W, Zhao X Y, Liu W M, Xue Z Q 2001 Acta Phys. Sin. 50 0223 (in Chinese) [侯士敏, 陶成钢, 刘虹雯, 赵兴钰, 刘惟敏, 薛增泉 2001 50 0223]

    [19]

    Anaïs Loubat, Marianne Imperor-Clerc, Brigitte Pansu, Florian Meneau, Bertrand Raquet, Guillaume Viau, Lise-Marie Lacroix 2014 Langmuir 30 4005

    [20]

    Luca Sementa, Andrea Marini, Giovanni Barcaro, Fabio R. Negreiros, and Alessandro Fortunelli 2014 ACS Photonics 1 315

    [21]

    Ci X T, Wu B T, Song M, Chen G X, Liu Y, Wu E, Zeng H P 2014 Chin. Phys. B 23 097303

    [22]

    Wang S F, He D W, Wang Y S, Hu Y, Duan J H, Fu M, Wang W S 2014 Chin. Phys. B 23 097803

    [23]

    Hu Y B, Zhu Y, Gao H J, Guo H 2005 Phys. Rev. Lett. 95 156803

    [24]

    Evers F, Weigend F, Koentopp M 2004 Phys, Rev. B 69 235411

    [25]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J 2007 Acta Phys. Sin. 56 4884 (in Chinese) [夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰 2007 56 4884]

  • [1] 赵建宁, 魏东, 吕国正, 王子成, 刘冬欢. 一维异质结构的瞬态热整流效应.  , 2023, 72(4): 044401. doi: 10.7498/aps.72.20222085
    [2] 何安, 薛存. 缺陷调控临界温度梯度超导膜的磁通整流反转效应.  , 2022, 71(2): 027401. doi: 10.7498/aps.71.20211157
    [3] 尚帅朋, 陆勇俊, 王峰会. 表面效应对纳米线电极屈曲失稳的影响.  , 2022, 71(3): 033101. doi: 10.7498/aps.71.20211864
    [4] 邵春瑞, 李海洋, 王军, 夏国栋. 多孔结构体材料热整流效应.  , 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [5] 樊帅伟, 王日高. 电极位置和截面尺寸对分子器件输运性质的调控.  , 2018, 67(21): 213101. doi: 10.7498/aps.67.20180974
    [6] 陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍. B/N掺杂类直三角石墨烯纳米带器件引起的整流效应.  , 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [7] 叶通, 高云, 尹彦. 利用聚碳酸酯模板制备的金纳米棒的表面增强Raman散射效应研究.  , 2013, 62(12): 127801. doi: 10.7498/aps.62.127801
    [8] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取.  , 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [9] 郑立思, 冯苗, 詹红兵. 表面修饰基团对金纳米颗粒非线性光学效应的影响研究.  , 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [10] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响.  , 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [11] 范志强, 谢芳. 硼氮原子取代掺杂对分子器件负微分电阻效应的影响.  , 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [12] 张茂平, 钟伟荣, 艾保全. 非对称双链分子结构的热整流效应.  , 2011, 60(6): 060511. doi: 10.7498/aps.60.060511
    [13] 郭超, 张振华, 潘金波, 张俊俊. D-B-A分子整流特性的端基效应.  , 2011, 60(11): 117303. doi: 10.7498/aps.60.117303
    [14] 潘金波, 张振华, 邱明, 郭超. 分子整流器整流特性的键桥调控效应.  , 2011, 60(3): 037302. doi: 10.7498/aps.60.037302
    [15] 王军, 李京颍, 郑志刚. 热整流效应的消失与翻转现象.  , 2010, 59(1): 476-481. doi: 10.7498/aps.59.476
    [16] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应.  , 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [17] 洪 昕, 杜丹丹, 裘祖荣, 张国雄. 半壳结构金纳米膜的局域表面等离子体共振效应.  , 2007, 56(12): 7219-7223. doi: 10.7498/aps.56.7219
    [18] 张志勇, 王太宏. 单电子晶体管-金属氧化物半导体场效应晶体管多峰值负微分电阻器件.  , 2003, 52(7): 1766-1770. doi: 10.7498/aps.52.1766
    [19] 汪蓉, 朱正和, 杨传路. C42+的几何构型和Jahn Teller效应.  , 2001, 50(9): 1675-1680. doi: 10.7498/aps.50.1675
    [20] 侯士敏, 陶成钢, 刘虹雯, 赵兴钰, 刘惟敏, 薛增泉. 高定向石墨表面金纳米粒子和金纳米线的研究.  , 2001, 50(2): 223-226. doi: 10.7498/aps.50.223
计量
  • 文章访问数:  6721
  • PDF下载量:  528
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-26
  • 修回日期:  2014-10-09
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map