-
Bi2Te3 nanowires and nanoparticles are synthesized by hydrothermal method, and the nanopowders are pressed into bulk pellets by high-pressure sintering or vacuum hot-pressed. The scanning electron microscope (SEM) results and thermal properties of such bulk samples are compared. The SEM result shows that the grain size of the high-pressure sintering sample is much smaller than that of the hot-pressed sample. The thermal properties show that the electrical resistivity, Seebeck coefficient, and thermal conductivity of the high-pressure sintering sample are all better than those of the hot-pressed sample. The ZT value of the high-pressure sintering sample prepared by nanowires reaches 0.5 at room temperature, which is much higher than that of the hot-pressed sample. Therefore the high-pressure sintering provides an effective method to press nanopowders to bulk.
[1] Baxter J, Bian Z X, Chen G, Danielson D, Dresselhaus M S, Fedorov A G, Fisher T S, Jones C W, Maginn E, Kortshagen U, Manthiram A, Nozik A, Rolison D R, Sands T, Shi L, Sholl D, Wu Y Y 2009 Energ. Environ. Sci. 2 559
[2] Wu S H, Ryosuke N, Masatsugu, Zhang Q S, Chihaya A 2014 Chin. Phys. B 23 098502
[3] Liu N, Luo X G, Zhang M L 2014 Chin. Phys. B 23 080502
[4] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
[5] Yang M J, Shen Q, Zhang L M 2011 Chin. Phys. B 20 106202
[6] Chung D Y, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C, Kanatzidis M G 2000 Science 287 1024
[7] Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B 2001 Nature 413 597
[8] Zhao X B, Ji X H, Zhang Y H, Zhu T J, Tu J P, Zhang X B 2005 Appl. Phys. Lett. 86 062111
[9] Jiang M B, Wu Z X, Zhou M, Huang R J, Li L F 2010 Acta Phys. Sin. 59 7314 (in Chinese) [蒋明波, 吴智雄, 周敏, 黄荣进, 李来风 2010 59 7314]
[10] Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G 2010 Adv. Mater. 22 3970
[11] Fan X A, Yang J Y, Xie Z, Li K, Zhu W, Duan X K, Xiao C J, Zhang Q Q 2007 J. Phys. D: Appl. Phys. 40 5975
[12] Xu Y B, Ren Z M, Cao G H, Ren W L, Deng K, Zhong Y B 2009 Physica B 404 4029
[13] Sun Z L, Liufu S C, Yao Q, Chen L D 2010 Mater. Chem. Phys. 121 138
[14] Zhao Y M, Hughes R W, Su Z X, Zhou W Z, Gregory D H 2011 Angew. Chem. Int. Ed. 50 10397
[15] Lu W G, Ding Y, Chen Y X, Wang Z L, Fang J Y 2005 J. Am. Chem. Soc. 127 10112
[16] Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X A, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634
[17] Liao S C, Mayo W E, Pae K D 1997 Acta Mater. 45 4027
[18] Godwal B K, Jayaraman A, Meenakshi S 1998 Phys. Rev. B 57 773
[19] Polvani D A, Meng J F, Shekar N V C, Sharp J, Badding J V 2001 Chem. Mater. 13 2068
[20] Thonhauser T, Jeon G S, Mahan G D, Sofo J O 2003 Phys. Rev. B 68 205207
[21] Thonhauser T, Scheidemantel T J, Sofo J O, Badding J V, Mahan G D 2003 Phys. Rev. B 68 085201
[22] Ovsyannikov S V, Shchennikov V V 2010 Chem. Mater. 22 635
[23] Liu W S, Yan X, Chen G, Ren Z F 2012 Nano Energy 1 42
[24] Liu W S, Zhang Q Y, Lan Y C, Chen S, Yan X, Zhang Q, Wang H, Wang D Z, Chen G, Ren Z F 2011 Adv. Energy Mater. 1 577
[25] Burstein E 1954 Phys. Rev. 93 632
[26] Yu B L, Tang X F, Qi Q, Zhang Q 2004 Acta Phys. Sin. 53 3130 (in Chinese) [余柏林, 唐新峰, 祁琼, 张清 2004 53 3130]
[27] Lan Y C, Minnich A J, Chen G, Ren Z F 2010 Adv. Funct. Mater. 20 357
[28] Wang S Y, Xie W J, Li H, Tang X F 2011 Intermetallics 19 1024
-
[1] Baxter J, Bian Z X, Chen G, Danielson D, Dresselhaus M S, Fedorov A G, Fisher T S, Jones C W, Maginn E, Kortshagen U, Manthiram A, Nozik A, Rolison D R, Sands T, Shi L, Sholl D, Wu Y Y 2009 Energ. Environ. Sci. 2 559
[2] Wu S H, Ryosuke N, Masatsugu, Zhang Q S, Chihaya A 2014 Chin. Phys. B 23 098502
[3] Liu N, Luo X G, Zhang M L 2014 Chin. Phys. B 23 080502
[4] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
[5] Yang M J, Shen Q, Zhang L M 2011 Chin. Phys. B 20 106202
[6] Chung D Y, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C, Kanatzidis M G 2000 Science 287 1024
[7] Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B 2001 Nature 413 597
[8] Zhao X B, Ji X H, Zhang Y H, Zhu T J, Tu J P, Zhang X B 2005 Appl. Phys. Lett. 86 062111
[9] Jiang M B, Wu Z X, Zhou M, Huang R J, Li L F 2010 Acta Phys. Sin. 59 7314 (in Chinese) [蒋明波, 吴智雄, 周敏, 黄荣进, 李来风 2010 59 7314]
[10] Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G 2010 Adv. Mater. 22 3970
[11] Fan X A, Yang J Y, Xie Z, Li K, Zhu W, Duan X K, Xiao C J, Zhang Q Q 2007 J. Phys. D: Appl. Phys. 40 5975
[12] Xu Y B, Ren Z M, Cao G H, Ren W L, Deng K, Zhong Y B 2009 Physica B 404 4029
[13] Sun Z L, Liufu S C, Yao Q, Chen L D 2010 Mater. Chem. Phys. 121 138
[14] Zhao Y M, Hughes R W, Su Z X, Zhou W Z, Gregory D H 2011 Angew. Chem. Int. Ed. 50 10397
[15] Lu W G, Ding Y, Chen Y X, Wang Z L, Fang J Y 2005 J. Am. Chem. Soc. 127 10112
[16] Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X A, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634
[17] Liao S C, Mayo W E, Pae K D 1997 Acta Mater. 45 4027
[18] Godwal B K, Jayaraman A, Meenakshi S 1998 Phys. Rev. B 57 773
[19] Polvani D A, Meng J F, Shekar N V C, Sharp J, Badding J V 2001 Chem. Mater. 13 2068
[20] Thonhauser T, Jeon G S, Mahan G D, Sofo J O 2003 Phys. Rev. B 68 205207
[21] Thonhauser T, Scheidemantel T J, Sofo J O, Badding J V, Mahan G D 2003 Phys. Rev. B 68 085201
[22] Ovsyannikov S V, Shchennikov V V 2010 Chem. Mater. 22 635
[23] Liu W S, Yan X, Chen G, Ren Z F 2012 Nano Energy 1 42
[24] Liu W S, Zhang Q Y, Lan Y C, Chen S, Yan X, Zhang Q, Wang H, Wang D Z, Chen G, Ren Z F 2011 Adv. Energy Mater. 1 577
[25] Burstein E 1954 Phys. Rev. 93 632
[26] Yu B L, Tang X F, Qi Q, Zhang Q 2004 Acta Phys. Sin. 53 3130 (in Chinese) [余柏林, 唐新峰, 祁琼, 张清 2004 53 3130]
[27] Lan Y C, Minnich A J, Chen G, Ren Z F 2010 Adv. Funct. Mater. 20 357
[28] Wang S Y, Xie W J, Li H, Tang X F 2011 Intermetallics 19 1024
计量
- 文章访问数: 6028
- PDF下载量: 476
- 被引次数: 0