搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯原理的Cosserat弹性杆动力学模型

刘延柱 薛纭

引用本文:
Citation:

基于高斯原理的Cosserat弹性杆动力学模型

刘延柱, 薛纭

Dynamical model of Cosserat elastic rod based on Gauss principle

Liu Yan-Zhu, Xue Yun
PDF
导出引用
  • 在动力学普遍原理中, 高斯最小拘束原理的特点是可通过寻求函数极值的变分方法直接得出运动规律, 而无须建立动力学微分方程. Kirchhoff动力学比拟方法以刚性截面的姿态表述弹性细杆的几何形态, 并发展为以弧坐标s和时间t为自变量的弹性杆分析力学. 由于截面姿态的局部微小改变沿弧坐标的积累不受限制, Kirchhoff模型适合描述弹性杆的超大变形. Cosserat弹性杆模型考虑了Kirchhoff模型忽略的截面剪切变形、中心线伸缩变形和分布力等因素, 是更符合实际弹性杆的动力学模型. 建立了基于高斯原理的Cosserat弹性杆的分析力学模型, 导出拘束函数的普遍形式, 以平面运动为例进行讨论. 关于弹性杆空间不可自相侵占的特殊问题, 给出相应的约束条件对可能运动施加限制, 以避免自相侵占情况发生.
    Based on the generalized principles of dynamics, the feature of Gauss principle of least constraint is that the motion law can be directly obtained by using the variation method of seeking the minimal value of the constraint function without establishing any dynamic differential equations. According to the Kirchhoff's dynamic analogy, the configuration of an elastic rod can be described by the rotation of rigid cross section of the rod along the centerline. Since the local small change of the attitude of cross section can be accumulated infinitely along the arc-coordinate, the Kirchhoff's model is suited to describe the super-large deformation of elastic rod. Therefore the analytical mechanics of elastic rod with arc-coordinate s and time t as double arguments has been developed. The Cosserat model of elastic rod takes into consideration the factors neglected by the Kirchhoff model, such as the shear deformation of cross section, the tensile deformation of centerline, and distributed load, so it is more suitable to modeling a real elastic rod. In this paper, the model of the Cosserat rod is established based on the Gauss principle, and the constraint function of the rod is derived in the general form. The plane motion of the rod is discussed as a special case. As regards the special problem that different parts of the rod in space are unable to self-invade each other, a constraint condition is derived to restrict the possible configurations in variation calculation so as to avoid the invading possibility.
    • 基金项目: 国家自然科学基金(批准号: 11372195)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11372195).
    [1]

    Liu Y Z 2001 Advanced Dynamics (Beijing: High Education Press) (in Chinese) [刘延柱 2001 高等动力学 (北京: 高等教育出版社)]

    [2]

    Popov E P, Vereshchagin A F, Zenkevich S A 1978 Manipulative Robots, Dynamics and Algorithm (Moscow: Science) (in Russian) [Попов ЕП, Берещагин АФ, Зенкевич С А 1978 Манипулядионные роботы, динамики и алгоритмы(Москва:Наука)]

    [3]

    Lilov L, Lorer M 1982 Z. Angew. Math. Mech. 62 539

    [4]

    Kalaba R E, Udwadia F E 1993 Trans. ASME J. Appl. Mech. 60 662

    [5]

    Kalaba R, Natsuyama H, Udwadia F 2004 Int. J. General Syst. 33 63

    [6]

    Dong L L, Yan G R, Du Y T, Yu J J, Niu B L, Li R L 2001 Acta Armament. 22 347 (in Chinese) [董龙雷, 闫桂荣, 杜彦亭, 余建军, 牛宝良, 李荣林 2001 兵工学报 22 347]

    [7]

    Hao M W, Ye Z Y 2011 J. Guangxi Univ. (Nat. Sci. Ed.) 36 195 (in Chinese) [郝名望, 叶正寅2011广西大学学报(自然科学版) 36 195]

    [8]

    Liu Y Z, Zu J W 2004 Acta Mech. 167 29

    [9]

    Liu Y Z, Xue Y 2005 Chin. Quart. Mech. 26 1 (in Chinese) [刘延柱, 薛纭 2005力学季刊 26 1]

    [10]

    Liu Y Z, Sheng L W 2007 Acta Mech. Sin. 23 215

    [11]

    Liu Y Z, Xue Y 2011 Chin. J. Theor. Appl. Mech. 43 1151 (in Chinese) [刘延柱, 薛纭 2011 力学学报 43 1151]

    [12]

    Liu Y Z 2009 Chin. Phys. B 18 1

    [13]

    13Liu Y Z, Xue Y 2011 Appl. Math. Mech. 32 570 (in Chinese) [刘延柱, 薛纭2011 应用数学和力学 32 570]

    [14]

    Liu Y Z 2012 Chin. J. Theor. Appl. Mech. 44 832 (in Chinese) [刘延柱 2012 力学学报 44 832]

    [15]

    Liu Y Z, Xue Y 2004 Tech. Mech. 24 206

    [16]

    Xue Y, Liu Y Z, Chen L Q 2005 Chin. J. Theor. Appl. Mech. 37 485 (in Chinese) [薛纭, 刘延柱, 陈立群 2005 力学学报 37 485]

    [17]

    Xue Y, Liu Y Z 2006 Acta Phys. Sin. 55 3845 (in Chinese) [薛纭, 刘延柱 2006 55 3845]

    [18]

    Xue Y, Weng D W 2009 Acta Phys. Sin. 58 34 (in Chinese) [薛纭, 翁德玮 2009 58 34]

  • [1]

    Liu Y Z 2001 Advanced Dynamics (Beijing: High Education Press) (in Chinese) [刘延柱 2001 高等动力学 (北京: 高等教育出版社)]

    [2]

    Popov E P, Vereshchagin A F, Zenkevich S A 1978 Manipulative Robots, Dynamics and Algorithm (Moscow: Science) (in Russian) [Попов ЕП, Берещагин АФ, Зенкевич С А 1978 Манипулядионные роботы, динамики и алгоритмы(Москва:Наука)]

    [3]

    Lilov L, Lorer M 1982 Z. Angew. Math. Mech. 62 539

    [4]

    Kalaba R E, Udwadia F E 1993 Trans. ASME J. Appl. Mech. 60 662

    [5]

    Kalaba R, Natsuyama H, Udwadia F 2004 Int. J. General Syst. 33 63

    [6]

    Dong L L, Yan G R, Du Y T, Yu J J, Niu B L, Li R L 2001 Acta Armament. 22 347 (in Chinese) [董龙雷, 闫桂荣, 杜彦亭, 余建军, 牛宝良, 李荣林 2001 兵工学报 22 347]

    [7]

    Hao M W, Ye Z Y 2011 J. Guangxi Univ. (Nat. Sci. Ed.) 36 195 (in Chinese) [郝名望, 叶正寅2011广西大学学报(自然科学版) 36 195]

    [8]

    Liu Y Z, Zu J W 2004 Acta Mech. 167 29

    [9]

    Liu Y Z, Xue Y 2005 Chin. Quart. Mech. 26 1 (in Chinese) [刘延柱, 薛纭 2005力学季刊 26 1]

    [10]

    Liu Y Z, Sheng L W 2007 Acta Mech. Sin. 23 215

    [11]

    Liu Y Z, Xue Y 2011 Chin. J. Theor. Appl. Mech. 43 1151 (in Chinese) [刘延柱, 薛纭 2011 力学学报 43 1151]

    [12]

    Liu Y Z 2009 Chin. Phys. B 18 1

    [13]

    13Liu Y Z, Xue Y 2011 Appl. Math. Mech. 32 570 (in Chinese) [刘延柱, 薛纭2011 应用数学和力学 32 570]

    [14]

    Liu Y Z 2012 Chin. J. Theor. Appl. Mech. 44 832 (in Chinese) [刘延柱 2012 力学学报 44 832]

    [15]

    Liu Y Z, Xue Y 2004 Tech. Mech. 24 206

    [16]

    Xue Y, Liu Y Z, Chen L Q 2005 Chin. J. Theor. Appl. Mech. 37 485 (in Chinese) [薛纭, 刘延柱, 陈立群 2005 力学学报 37 485]

    [17]

    Xue Y, Liu Y Z 2006 Acta Phys. Sin. 55 3845 (in Chinese) [薛纭, 刘延柱 2006 55 3845]

    [18]

    Xue Y, Weng D W 2009 Acta Phys. Sin. 58 34 (in Chinese) [薛纭, 翁德玮 2009 58 34]

  • [1] 王鹏, 薛纭, 楼智美. 黏性流体中超细长弹性杆的动力学不稳定性.  , 2017, 66(9): 094501. doi: 10.7498/aps.66.094501
    [2] 薛纭, 翁德玮, 陈立群. 精确Cosserat弹性杆动力学的分析力学方法.  , 2013, 62(4): 044601. doi: 10.7498/aps.62.044601
    [3] 王炜, 张琪昌, 靳刚. 非对称截面Kirchhoff弹性细杆模型简化方法研究.  , 2012, 61(6): 064602. doi: 10.7498/aps.61.064602
    [4] 薛纭, 王鹏. Cosserat弹性杆动力学普遍定理的守恒量问题.  , 2011, 60(11): 114501. doi: 10.7498/aps.60.114501
    [5] 薛纭, 翁德玮. 弹性压扭直杆的Greenhill公式对精确模型的推广.  , 2010, 59(12): 8330-8334. doi: 10.7498/aps.59.8330
    [6] 崔建新, 高海波, 洪文学. 超细长弹性杆的Mei对称性及其Noether守恒量.  , 2009, 58(11): 7426-7430. doi: 10.7498/aps.58.7426
    [7] 薛纭, 刘延柱. Kirchhoff弹性直杆在力螺旋作用下的稳定性.  , 2009, 58(10): 6737-6742. doi: 10.7498/aps.58.6737
    [8] 薛纭, 翁德玮. 超细长弹性杆动力学的Gauss原理.  , 2009, 58(1): 34-39. doi: 10.7498/aps.58.34
    [9] 刘延柱, 薛纭. 受拉扭弹性细杆超螺旋形态的定性分析.  , 2009, 58(9): 5936-5941. doi: 10.7498/aps.58.5936
    [10] 刘延柱, 盛立伟. 圆截面弹性螺旋杆的稳定性与振动.  , 2007, 56(4): 2305-2310. doi: 10.7498/aps.56.2305
    [11] 薛 纭, 刘延柱, 陈立群. Kirchhoff弹性杆动力学建模的分析力学方法.  , 2006, 55(8): 3845-3851. doi: 10.7498/aps.55.3845
    [12] 刘延柱. 黏性介质中圆截面弹性细杆的平面振动.  , 2005, 54(11): 4989-4993. doi: 10.7498/aps.54.4989
    [13] 黄 磊, 包光伟, 刘延柱. 弹性细杆弯曲的Kirchhoff方程的违约校正求解.  , 2005, 54(6): 2457-2462. doi: 10.7498/aps.54.2457
    [14] 刘延柱, 薛 纭, 陈立群. 弹性细杆平衡的动态稳定性.  , 2004, 53(8): 2424-2428. doi: 10.7498/aps.53.2424
    [15] 薛 纭, 陈立群, 刘延柱. 受曲面约束弹性细杆的平衡问题.  , 2004, 53(7): 2040-2045. doi: 10.7498/aps.53.2040
    [16] 颜家壬;;邹凤梧. 粘弹性阻尼对弹性杆内纵向孤波运动的影响.  , 1989, 38(8): 1322-1328. doi: 10.7498/aps.38.1322
    [17] 胡海昌. 开口截面弹性薄壁杆件的稳定性.  , 1956, 12(2): 152-169. doi: 10.7498/aps.12.152
    [18] 解伯民. 弹性薄壁杆件的振动理论.  , 1956, 12(3): 261-270. doi: 10.7498/aps.12.261
    [19] 胡海昌. 弹性薄壁杆件的大扭转.  , 1956, 12(2): 139-151. doi: 10.7498/aps.12.139
    [20] 解伯民. 弹性薄壁杆件的动力稳定.  , 1956, 12(3): 246-260. doi: 10.7498/aps.12.246
计量
  • 文章访问数:  7299
  • PDF下载量:  485
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-15
  • 修回日期:  2014-09-25
  • 刊出日期:  2015-02-05

/

返回文章
返回
Baidu
map