-
本文利用离子束表面改性技术对基底表面进行不同时间的轰击, 形成不同规则的纳米织构, 对不同织构的变化规律进行了研究, 同时, 利用磁过滤真空阴极电弧技术, 在具有不同纳米织构的各基底上沉积相同时间的四面体非晶碳薄膜. 采用原子力显微镜对各基底的织构进行形貌分析, 结果表明, 高能粒子束的轰击对基底表面形貌有较大的影响, 根据离子束轰击时间的不同, 可以在基底表面形成各种不同规则的纳米织构, 轰击15 min后发现基底表面形成点阵纳米织构, 之后随着时间的增加, 基本维持点阵结构. 通过X射线光电子能谱仪和摩擦磨损试验仪对沉积在具有不同织构的基底上的ta-C薄膜进行测试, 研究表明, 基底表面纳米织构的非晶层结构引起薄膜内部sp3键的含量降低, 释放了薄膜的内应力, 同时发现基底表面纳米织构将ta-C薄膜磨损时间从不足10 min提高到约70 min, 有效提高了薄膜的耐磨性.Ion-beam surface bombardment modification technology is successfully used to manufacture different kinds of nano-textures on the surface of silicon substrate. Relationship between the morphology and arrangement patterns of nano-textures and the bombarding parameters is studied. Results show that the ion-beam bombardment has a significant impact on surface morphology. Different kinds of textures on silicon substrate can be formed according to the variation of bombardment time. The nanodot array texture is observed on the surface of silicon substrate when the duration of argon ion-beam bombardment is 15 minutes. Simultaneously, the tetrahedral amorphous carbon film is deposited on the silicon substrates that have different kinds of nano-texture. The microstructure of ta-C film deposited on unprocessed and nano-textured silicon substrate is analyzed by X-ray photoelectron spectroscopy. Results indicate that the content of sp3 bonds decreases with increasing bombardment time, and thereafter keeps a steady value. The ta-C films deposited on the nanodot-textured substrate shows the lowest sp3 fraction. It is also observed by friction and wear test that the wear time is enhanced from 10 to 70 min. The tribological properties is highly improved when the coating is deposited on the nano-textured substrate.
-
Keywords:
- tetrahedral amorphous carbon film /
- ion beam surface modification technology /
- surface texture /
- X-ray photoelectron spectroscopy
[1] Lifshitz Y, Kasi S R, Rabalais J W 1989 Phys. Rev. Lett. 62 1290
[2] Siegal M P, Tallant D R, Provencio P N, Overmyer D L, Simpson R L, Martinez-Miranda L J 2000 Appl. Phys. Lett. 76 3052
[3] Zhu J Q, Wang J H, Meng S H, Han J C, Zhang L S 2004 Acta Phys. Sin. 53 1150 (in Chinese) [朱嘉琦, 王景贺, 孟松鹤, 韩杰才, 张连升 2004 53 1150]
[4] McKenzie D R 1996 Rep. Prog. Phys. 59 1611
[5] Han L, Yang L, Yang L M C, Wang Y W, Zhao Y Q 2011 Acta Phys. Sin. 60 046802 (in Chinese) [韩亮, 杨立, 杨拉毛草, 王炎武, 赵玉清 2011 60 046802]
[6] Andersson J, Erck R A, Erdemir A 2003 Wear 254 1070
[7] Sheeja D, Tay B K, Lau S P, Shi X 2001 Wear 249 433
[8] Yin Y, McKenzie D R 1996 Thin Solid Films 280 95
[9] Weissmantel S, Reisse G, Rost D 2004 Surf. Coat. Tech. 188 268
[10] Han L, Chen X, Wang Y W, Wang X Y, Wang X Y, Zhao Y Q 2011 Acta Phys. Sin. 60 066804 (in Chinese) [韩亮, 陈仙, 杨立, 王炎武, 王晓艳, 赵玉清 2011 60 066804]
[11] Jones M I, McColl I R, Grant D M, Parker K G, Parker T L 1999 Diamond Relat. Mater. 8 457
[12] Tay B K, Shi X, Liu E J, Tan H S, Cheah L K 1999 Thin Solid Films. 346 15
[13] Han L, Liu D L, Chen X, Yang L, Zhao Y Q 2012 Appl. Surf. Sci. 258 4794
[14] Gago R, Vazquez L, Cuerno R, Varela M, Ballesteros C, Albella J M 2001 Appl. Phys. Lett. 78 3316
[15] Ziegler J F 1999 Appl. Phys. Lett. 85 1249
[16] Robertson J 1993 Diamond. Relat. Mater. 2 984
[17] Harris S J, Weiner A M, Meng W J 1997 Wear 211 208
[18] Komvopoulos K 2003 J. Adhes. Sci. Technol. 17 477
[19] Suh N P, Mosleh M, Howard P S 1994 Wear 175 151
[20] Li H X, Ji L, Wu Y X, Zhou H D, Chen J M, Wang Y J, Liu X H 2012 Chin. Phys. B 21 016101
[21] Lu X C, Luo J B, Zhang Z Y 2007 Chin. Phys. 16 3790
[22] Zhang Z Y, Lu X C, Luo J B, Shao T M, Qing T, Zhang C H 2006 Chin. Phys. 15 2697
[23] Mckenzie D R, Mullar D, Pailthorpe B. A 1991 Phys. Rev. Lett. 67 773
[24] Forouhi A, Bloomer I 1986 Phys. Rev. B 34 7018
-
[1] Lifshitz Y, Kasi S R, Rabalais J W 1989 Phys. Rev. Lett. 62 1290
[2] Siegal M P, Tallant D R, Provencio P N, Overmyer D L, Simpson R L, Martinez-Miranda L J 2000 Appl. Phys. Lett. 76 3052
[3] Zhu J Q, Wang J H, Meng S H, Han J C, Zhang L S 2004 Acta Phys. Sin. 53 1150 (in Chinese) [朱嘉琦, 王景贺, 孟松鹤, 韩杰才, 张连升 2004 53 1150]
[4] McKenzie D R 1996 Rep. Prog. Phys. 59 1611
[5] Han L, Yang L, Yang L M C, Wang Y W, Zhao Y Q 2011 Acta Phys. Sin. 60 046802 (in Chinese) [韩亮, 杨立, 杨拉毛草, 王炎武, 赵玉清 2011 60 046802]
[6] Andersson J, Erck R A, Erdemir A 2003 Wear 254 1070
[7] Sheeja D, Tay B K, Lau S P, Shi X 2001 Wear 249 433
[8] Yin Y, McKenzie D R 1996 Thin Solid Films 280 95
[9] Weissmantel S, Reisse G, Rost D 2004 Surf. Coat. Tech. 188 268
[10] Han L, Chen X, Wang Y W, Wang X Y, Wang X Y, Zhao Y Q 2011 Acta Phys. Sin. 60 066804 (in Chinese) [韩亮, 陈仙, 杨立, 王炎武, 王晓艳, 赵玉清 2011 60 066804]
[11] Jones M I, McColl I R, Grant D M, Parker K G, Parker T L 1999 Diamond Relat. Mater. 8 457
[12] Tay B K, Shi X, Liu E J, Tan H S, Cheah L K 1999 Thin Solid Films. 346 15
[13] Han L, Liu D L, Chen X, Yang L, Zhao Y Q 2012 Appl. Surf. Sci. 258 4794
[14] Gago R, Vazquez L, Cuerno R, Varela M, Ballesteros C, Albella J M 2001 Appl. Phys. Lett. 78 3316
[15] Ziegler J F 1999 Appl. Phys. Lett. 85 1249
[16] Robertson J 1993 Diamond. Relat. Mater. 2 984
[17] Harris S J, Weiner A M, Meng W J 1997 Wear 211 208
[18] Komvopoulos K 2003 J. Adhes. Sci. Technol. 17 477
[19] Suh N P, Mosleh M, Howard P S 1994 Wear 175 151
[20] Li H X, Ji L, Wu Y X, Zhou H D, Chen J M, Wang Y J, Liu X H 2012 Chin. Phys. B 21 016101
[21] Lu X C, Luo J B, Zhang Z Y 2007 Chin. Phys. 16 3790
[22] Zhang Z Y, Lu X C, Luo J B, Shao T M, Qing T, Zhang C H 2006 Chin. Phys. 15 2697
[23] Mckenzie D R, Mullar D, Pailthorpe B. A 1991 Phys. Rev. Lett. 67 773
[24] Forouhi A, Bloomer I 1986 Phys. Rev. B 34 7018
计量
- 文章访问数: 6205
- PDF下载量: 239
- 被引次数: 0