-
微波热声成像技术具有非侵入式、高对比度、高分辨率和低成本等优点而日益受到重视, 基于以上特点该技术有望发展成为早期乳腺癌常规或者辅助筛查手段. 本文基于脉冲微波热声成像系统, 利用软件仿真和对装有饱和盐水的塑料管阵列进行三维热声成像, 对脉冲微波辐射场的空间分布进行了理论和实验研究, 其中: 塑料管阵列为直径3 mm, 间隔8 mm的99方形结构. 仿真和实验结果表明距离天线越远脉冲能量覆盖范围越大, 能被有效成像的塑料管数目越多; 塑料管阵列的热声成像结果为3.1 mm直径, 7.7 mm间距. 本文验证了微波热声成像技术对脉冲微波辐射场空间分布的成像能力, 对解决定量热声成像技术中微波场能量分布不均匀问题的研究具有重要意义.Microwave-induced thermoacoustic imaging is a noninvasive, high contrast, high resolution, and cost effective method for cancer detection. It has the potential to serve as a routine breast tumor screening. In the present study, simulation and experiment have been used for pulsed microwave energy spatial distribution investigation. The target to be imaged is a 99 square array composed of tubes 3 mm in diameter and 8 mm in separation. The simulation and experimental results both indicat that far away from the antenna, more tubes could be thermoacoustically recovered, which means a larger radiation area obtained. The thermoacooustically recovered tubes are 3.1 mm in diameter and 7.7 mm in separation. Obtained results suggest that it is feasible to detect microwave energy spatial distribution with the thermoacoustic imaging, which has paved the way to solve the inhomogeneous microwave energy problem in traditional quantitative thermoacoustic tomography.
[1] Olsen R G, Lin J C 1983 Bioelectromagnetics 01 397
[2] Wang S H, Tao C, Liu X J 2013 Chin. Phys. B 22 074303
[3] [4] Mashal A, BooskeJ H, Hagness SC 2009 Phys. Med. Biol. 54 641
[5] [6] [7] Bauer D R, Wang X, Vollin J 2012 Appl. Phys. Lett. 101 1
[8] Wang L V, Zhao X M, Sun H T 1999 Rev. Sci. Instrum. 70 3744
[9] [10] Yao L, Guo G F, Jiang H B 2010 Med. Phys. 37 3752
[11] [12] Kruger R A, Kopecky K K, Aisen A M 1999 Radiology. 211 275
[13] [14] Ku G, Wang L V 2001 Med. Phys. 28 4
[15] [16] [17] Yang S H, Xing D, Xiang L Z 2007 Science in China 37 101 (in Chinese) [杨思华, 邢达, 向良忠 2007 中国科学 37 101]
[18] [19] Nie L M, Xing D, Yang D W 2007 Appl. Phys. Lett. 90 1
[20] Zeng L M, Xing D, Gu H M 2006 Chin. Phys. Lett. 23 1215
[21] [22] Yuan Y, Yang S H 2012 Chin. Phys. B. 21 054211
[23] [24] [25] Tao C J, Song T, Wu S Z 2007 Beijing Biomedical Engineering 26 23 (in Chinese) [陶春静, 宋涛, 吴石增 2007 北京生物医学工程 26 23]
[26] [27] Liu G D, Zhang Y R 2011 Acta Phys. Sin. 60 431 (in Chinese) [刘广东, 张业荣 2011 60 431]
[28] [29] Huang L, Yao L, Liu L X 2012 Appl. Phys. Lett. 101 1
[30] [31] Ciocan R, Jiang H 2004 Med. Phys. 31 3231
[32] [33] Zhen Yuan, Huabei Jiang 2006 Appl. Phys. Lett. 88 231101
[34] Lin J C 1991 IEEE Standards Coordinating Committee. 95 1
[35] -
[1] Olsen R G, Lin J C 1983 Bioelectromagnetics 01 397
[2] Wang S H, Tao C, Liu X J 2013 Chin. Phys. B 22 074303
[3] [4] Mashal A, BooskeJ H, Hagness SC 2009 Phys. Med. Biol. 54 641
[5] [6] [7] Bauer D R, Wang X, Vollin J 2012 Appl. Phys. Lett. 101 1
[8] Wang L V, Zhao X M, Sun H T 1999 Rev. Sci. Instrum. 70 3744
[9] [10] Yao L, Guo G F, Jiang H B 2010 Med. Phys. 37 3752
[11] [12] Kruger R A, Kopecky K K, Aisen A M 1999 Radiology. 211 275
[13] [14] Ku G, Wang L V 2001 Med. Phys. 28 4
[15] [16] [17] Yang S H, Xing D, Xiang L Z 2007 Science in China 37 101 (in Chinese) [杨思华, 邢达, 向良忠 2007 中国科学 37 101]
[18] [19] Nie L M, Xing D, Yang D W 2007 Appl. Phys. Lett. 90 1
[20] Zeng L M, Xing D, Gu H M 2006 Chin. Phys. Lett. 23 1215
[21] [22] Yuan Y, Yang S H 2012 Chin. Phys. B. 21 054211
[23] [24] [25] Tao C J, Song T, Wu S Z 2007 Beijing Biomedical Engineering 26 23 (in Chinese) [陶春静, 宋涛, 吴石增 2007 北京生物医学工程 26 23]
[26] [27] Liu G D, Zhang Y R 2011 Acta Phys. Sin. 60 431 (in Chinese) [刘广东, 张业荣 2011 60 431]
[28] [29] Huang L, Yao L, Liu L X 2012 Appl. Phys. Lett. 101 1
[30] [31] Ciocan R, Jiang H 2004 Med. Phys. 31 3231
[32] [33] Zhen Yuan, Huabei Jiang 2006 Appl. Phys. Lett. 88 231101
[34] Lin J C 1991 IEEE Standards Coordinating Committee. 95 1
[35]
计量
- 文章访问数: 6365
- PDF下载量: 304
- 被引次数: 0