搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含微孔洞脆性材料的冲击响应特性与介观演化机制

喻寅 贺红亮 王文强 卢铁城

引用本文:
Citation:

含微孔洞脆性材料的冲击响应特性与介观演化机制

喻寅, 贺红亮, 王文强, 卢铁城

Shock response and evolution mechanism of brittle material containing micro-voids

Yu Yin, He Hong-Liang, Wang Wen-Qiang, Lu Tie-Cheng
PDF
导出引用
  • 微孔洞显著地影响着脆性材料的冲击响应, 理解其介观演化机制和宏观响应规律将使微孔洞有利于而无害于脆性材料的工程应用. 通过建立能够准确表现材料弹性性质和断裂演化的格点-弹簧模型, 本文揭示了孔洞的演化对于脆性材料的影响. 冲击下孔洞导致的塌缩变形和从孔洞发射的剪切裂纹所导致的滑移变形产生了显著的应力松弛, 并调制了冲击波的传播. 在多孔脆性材料中, 冲击波逐渐展宽为弹性波和变形波. 变形波在宏观上类似于延性金属材料的塑性波, 在介观上对应于塌缩变形和滑移变形过程. 样品中的气孔率决定了脆性材料的弹性极限, 气孔率和冲击应力共同影响着变形波的传播速度和冲击终态的应力幅值. 含微孔洞脆性材料在冲击波复杂加载实验、功能材料失效的预防、建筑物防护等方面具有潜在的应用价值. 本文获得的冲击响应规律有助于针对特定应用优化设计脆性材料的冲击响应和动态力学性能.
    Micro-voids significantly affect shock responses of brittle materials. Knowledge about the meso-scale evolution mechanism and macro-scale shock behavior will help to utilize micro-void in applications and avoid its disadvantages. A lattice-spring model, which can represent both elastic property and fracture evolution accurately, is built in this work. Simulations reveal that severe stress relaxation, which is contributed from collapse deformation induced by voids and slippage deformation induced by shear cracks extending from voids, modulates the propagation of shock wave. In a porous brittle material, the shock wave broadens into an elastic wave and a deformation wave. On a macro-scale, the deformation wave behaves as a plastic wave in ductile metal; on a meso-scale, it corresponds to the processes of collapse and slippage deformations. It is found that porosity of the sample determines the Hugoniot elastic limit of material; whereas the porosity and shock stress affect the propagation speed of the deformation wave and stress amplitude in a final state of shock. Brittle materials containing micro-voids have potential applications in complex shock loading experiments, precaution of shock induced function failure, and crashworthiness of buildings. Shock behaviors reported in this work will benefit the design and optimization of shock responses and dynamic mechanical properties of brittle materials used in specific applications.
    • 基金项目: 中国工程物理研究院重点实验室专项科研计划(批准号: 2012-专-03)、冲击波物理与爆轰物理重点实验室基金(批准号: 9140C670301120C67248)和国家自然科学基金(批准号: 11272164)资助的课题.
    • Funds: Project supported by the National Key Laboratory of Shock Wave and Detonation Physics of China Academy of Engineering Physics (Grant No. 2012-zhuan-03), the Foundation of National Key Laboratory of Shock Wave and Detonation Physics, China (Grant No. 9140C670301120C67248), and the National Natural Science Foundation of China (Grant No. 11272164).
    [1]

    Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907

    [2]

    Sarac B, Schroers J 2013 Nat. Commun. 4 2158

    [3]

    Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F 2012 Mater. Sci. Eng. A 534 365

    [4]

    Herring S D, Germann T C, Grönbech-Jensen N 2010 Phys. Rev. B 82 214108

    [5]

    Mang J T, Hjelm R P, Francois E G 2010 Propellants Explos. Pyrotech. 35 7

    [6]

    Swantek A B, Austin J M 2010 J. Fluid Mech. 649 399

    [7]

    Vandersall K S, Tarver C M, Garcia F, Chidester S K 2010 J. Appl. Phys. 107 094906

    [8]

    Zhang F, He H, Liu G, Liu Y, Yu Y, Wang Y 2013 J. Appl. Phys. 113 183501

    [9]

    Zeng T, Dong X L, Mao C L, Zhou Z Y, Yang H 2007 J. Eur. Ceram. Soc. 27 2025

    [10]

    Setchell R E 2005 J. Appl. Phys. 97 013507

    [11]

    Jiang D, Du J, Gu Y, Feng Y 2012 J. Appl. Phys. 111 104102

    [12]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 60 057701]

    [13]

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2013 Acta Phys. Sin. 62 226201 (in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2013 62 226201]

    [14]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [15]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202

    [16]

    Gray III G T 2012 Shock Compression of Condensed Matter-2011 Chicago, USA, June 26-July 1, 2011 p19

    [17]

    Tan P J, Reid S R, Harrigan J J, Zou Z, Li S 2005 J. Mech. Phys. Solids 53 2206

    [18]

    Geng H Y, Wu Q, Tan H, Cai L C, Jing F Q 2002 Chin. Phys. 11 1188

    [19]

    Chang J, Lian P, Wei D Q, Chen X R, Zhang Q M, Gong Z Z 2010 Phys. Rev. Lett. 105 188302

    [20]

    Cui X L, Zhu W J, He H L, Deng X L, Li Y J 2008 Phys. Rev. B 78 024115

    [21]

    Bringa E M, Rosolankova K, Rudd R E, Remington B A, Wark J S, Duchaineau M, Kalantar D H, Hawrellak J, Belak J 2006 Nat. Mater. 5 805

    [22]

    Shehadeh M A, Bringa E M, Zbib H M, McNaney J M, Remington B A 2006 Appl. Phys. Lett. 89 171918

    [23]

    Dávila L P, Erhart P, Bringa E M, Meyers M A, Lubarda V A, Schneider M S 2005 Appl. Phys. Lett. 86 161902

    [24]

    Buxton G A, Care C M, Cleaver D J 2001 Modelling Simul Mater. Sci. Eng. 9 485

    [25]

    Zhao G, Fang J, Zhao J 2011 Int. J. Numer. Anal. Meth. Geomech. 35 859

    [26]

    Ostoja-Starzewski M 2002 Appl. Mech. Rev. 55 35

    [27]

    Wang Y, Yin X C, Ke F J, Xia M F, Peng K Y 2000 Pure Appl. Geophys. 157 1905

    [28]

    Yano K, Horie Y 1999 Phys. Rev. B 59 13672

    [29]

    Grah M, Alzebdeh K, Sheng P Y, Vaudin M D, Bowman K J, Ostoja-Starzewski M 1996 Acta Mater. 44 4003

    [30]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302

    [31]

    Yu Y, Wang W Q, Yang J, Zhang Y J, Jiang D D, He H L 2012 Acta Phys. Sin. 61 048103 (in Chinese) [喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮 2012 61 048103]

    [32]

    Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solids (Beijing: Higher Education Press) pp4, 5 (in Chinese) [罗恩 B 著 (龚江宏 译) 2010 脆性固体断裂力学 (北京: 高等教育出版社) 第4, 5页]

    [33]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309

    [34]

    Grady D E 1998 Mech. Mater. 29 181

    [35]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [36]

    Setchell R E 2003 J. Appl. Phys. 94 573

  • [1]

    Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907

    [2]

    Sarac B, Schroers J 2013 Nat. Commun. 4 2158

    [3]

    Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F 2012 Mater. Sci. Eng. A 534 365

    [4]

    Herring S D, Germann T C, Grönbech-Jensen N 2010 Phys. Rev. B 82 214108

    [5]

    Mang J T, Hjelm R P, Francois E G 2010 Propellants Explos. Pyrotech. 35 7

    [6]

    Swantek A B, Austin J M 2010 J. Fluid Mech. 649 399

    [7]

    Vandersall K S, Tarver C M, Garcia F, Chidester S K 2010 J. Appl. Phys. 107 094906

    [8]

    Zhang F, He H, Liu G, Liu Y, Yu Y, Wang Y 2013 J. Appl. Phys. 113 183501

    [9]

    Zeng T, Dong X L, Mao C L, Zhou Z Y, Yang H 2007 J. Eur. Ceram. Soc. 27 2025

    [10]

    Setchell R E 2005 J. Appl. Phys. 97 013507

    [11]

    Jiang D, Du J, Gu Y, Feng Y 2012 J. Appl. Phys. 111 104102

    [12]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 60 057701]

    [13]

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2013 Acta Phys. Sin. 62 226201 (in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2013 62 226201]

    [14]

    Sun B R, Zhan Z J, Liang B, Zhang R J, Wang W K 2012 Chin. Phys. B 21 056101

    [15]

    Wang F, Peng X S, Liu S Y, Li Y S, Jiang X H, Ding Y K 2011 Chin. Phys. B 20 065202

    [16]

    Gray III G T 2012 Shock Compression of Condensed Matter-2011 Chicago, USA, June 26-July 1, 2011 p19

    [17]

    Tan P J, Reid S R, Harrigan J J, Zou Z, Li S 2005 J. Mech. Phys. Solids 53 2206

    [18]

    Geng H Y, Wu Q, Tan H, Cai L C, Jing F Q 2002 Chin. Phys. 11 1188

    [19]

    Chang J, Lian P, Wei D Q, Chen X R, Zhang Q M, Gong Z Z 2010 Phys. Rev. Lett. 105 188302

    [20]

    Cui X L, Zhu W J, He H L, Deng X L, Li Y J 2008 Phys. Rev. B 78 024115

    [21]

    Bringa E M, Rosolankova K, Rudd R E, Remington B A, Wark J S, Duchaineau M, Kalantar D H, Hawrellak J, Belak J 2006 Nat. Mater. 5 805

    [22]

    Shehadeh M A, Bringa E M, Zbib H M, McNaney J M, Remington B A 2006 Appl. Phys. Lett. 89 171918

    [23]

    Dávila L P, Erhart P, Bringa E M, Meyers M A, Lubarda V A, Schneider M S 2005 Appl. Phys. Lett. 86 161902

    [24]

    Buxton G A, Care C M, Cleaver D J 2001 Modelling Simul Mater. Sci. Eng. 9 485

    [25]

    Zhao G, Fang J, Zhao J 2011 Int. J. Numer. Anal. Meth. Geomech. 35 859

    [26]

    Ostoja-Starzewski M 2002 Appl. Mech. Rev. 55 35

    [27]

    Wang Y, Yin X C, Ke F J, Xia M F, Peng K Y 2000 Pure Appl. Geophys. 157 1905

    [28]

    Yano K, Horie Y 1999 Phys. Rev. B 59 13672

    [29]

    Grah M, Alzebdeh K, Sheng P Y, Vaudin M D, Bowman K J, Ostoja-Starzewski M 1996 Acta Mater. 44 4003

    [30]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302

    [31]

    Yu Y, Wang W Q, Yang J, Zhang Y J, Jiang D D, He H L 2012 Acta Phys. Sin. 61 048103 (in Chinese) [喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮 2012 61 048103]

    [32]

    Lawn B (translated by Gong J H) 2010 Fracture of Brittle Solids (Beijing: Higher Education Press) pp4, 5 (in Chinese) [罗恩 B 著 (龚江宏 译) 2010 脆性固体断裂力学 (北京: 高等教育出版社) 第4, 5页]

    [33]

    Yu Y, Wang W Q, He H L, Lu T C 2014 Phys. Rev. E 89 043309

    [34]

    Grady D E 1998 Mech. Mater. 29 181

    [35]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [36]

    Setchell R E 2003 J. Appl. Phys. 94 573

  • [1] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究.  , 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [2] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究.  , 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [3] 何燕, 周刚, 刘艳侠, 王皞, 徐东生, 杨锐. 原子模拟钛中微孔洞的结构及其失效行为.  , 2018, 67(5): 050203. doi: 10.7498/aps.67.20171670
    [4] 陈兴, 马刚, 周伟, 赖国伟, 来志强. 无序性对脆性材料冲击破碎的影响.  , 2018, 67(14): 146102. doi: 10.7498/aps.67.20180276
    [5] 白雄飞, 牛书通, 周旺, 王光义, 潘鹏, 方兴, 陈熙萌, 邵剑雄. 20 keV质子在聚碳酸酯微孔膜中传输的动态演化过程.  , 2017, 66(9): 093401. doi: 10.7498/aps.66.093401
    [6] 喻寅, 贺红亮, 王文强, 卢铁城. 多孔脆性材料对高能量密度脉冲的吸收和抵抗能力.  , 2015, 64(12): 124302. doi: 10.7498/aps.64.124302
    [7] 王宏明, 李沛思, 郑瑞, 李桂荣, 袁雪婷. 强脉冲磁场冲击处理对铝基复合材料塑性的影响机制.  , 2015, 64(8): 087104. doi: 10.7498/aps.64.087104
    [8] 姜太龙, 喻寅, 宦强, 李永强, 贺红亮. 设计脆性材料的冲击塑性.  , 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [9] 喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮. 多孔脆性介质冲击波压缩破坏的细观机理和图像.  , 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [10] 闫冠云, 田强, 黄朝强, 顾小敏, 孙光爱, 陈波, 黄明, 聂福德, 柳义, 李秀宏. 热损伤奥克托金(HMX) 缺陷的X射线小角散射研究.  , 2012, 61(13): 136101. doi: 10.7498/aps.61.136101
    [11] 王海燕, 祝文军, 邓小良, 宋振飞, 陈向荣. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究.  , 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [12] 邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦. 冲击加载下孔洞贯通的微观机理研究.  , 2009, 58(7): 4772-4778. doi: 10.7498/aps.58.4772
    [13] 邵建立, 王 裴, 秦承森, 周洪强. 冲击加载下孔洞诱导相变形核分析.  , 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [14] 陈 军, 徐 云, 陈栋泉, 孙锦山. 冲击作用下纳米孔洞动力学行为的多尺度方法模拟研究.  , 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [15] 陈登平, 贺红亮, 黎明发, 经福谦. 冲击压缩下非均质脆性固体的弛豫破坏研究.  , 2007, 56(1): 423-428. doi: 10.7498/aps.56.423
    [16] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为.  , 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [17] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究.  , 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [18] 夏庆中, 陈 波, 曾贵玉, 罗顺火, 董海山, 荣利霞, 董宝中. 三氨基三硝基苯材料微孔结构的小角x射线散射实验研究.  , 2005, 54(7): 3273-3277. doi: 10.7498/aps.54.3273
    [19] 樊锡君, 田淑芬, 李 健, 刘 杰, 白成杰. 开放的无粒子数反转激光系统中原子响应的时间演化和光放大机制.  , 2000, 49(9): 1719-1725. doi: 10.7498/aps.49.1719
    [20] 王业宁, 许自然, 韩叶龙. 钼的晶界内耗峰及少量间隙杂质影响晶界脆性的机制.  , 1966, 22(6): 647-658. doi: 10.7498/aps.22.647
计量
  • 文章访问数:  6536
  • PDF下载量:  741
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-17
  • 修回日期:  2014-07-29
  • 刊出日期:  2014-12-05

/

返回文章
返回
Baidu
map