-
密排六方结构的Zr呈现弹塑性各向异性, 轧制工艺会使材料内部产生晶间应力. 准确地评估Zr合金内部的晶间应力分布并明确其微观形变机制, 对其服役能力和使用寿命的准确评判具有重要的科学意义和应用价值. 利用中子原位衍射技术结合弹塑性自洽(EPSC)模拟分析了Zr-4合金的压缩形变行为, 加载方式为沿轧板厚度方向压缩. 研究中辅以非原位的背散射电子衍射测试进行织构演化分析及透射电镜(TEM)测试分析缺陷形态. EPSC模拟可以定量地给出不同形变量下的形变机制, 并且计算结果可由TEM实验佐证. 研究表明: 当形变量较小(10}20> (a>型)滑移起主导作用; 随着塑性形变量的增加, 锥面滑移的作用增强, 且锥面{1011}23> (c+a>型)滑移的作用大于柱面{1010}20> (a>型)滑移, 少量的锥面{1011}20> (a>型)和{1012}20> (a>型)滑移也存在.Zirconium (Zr) has a hexagonal close-packed crystal structure, which exhibits elastic and plastic anisotropy. Internal stresses can be easily generated in the rolling process and the subsequent plastic deformation process. It is critical to evaluate the internal stresses and the deformation mechanisms of Zr alloy materials. The deformation behaviors of Zr alloy influence directly its service life and safety. In this work, compression deformation behaviors of zircaloy-4 (Zr-4) alloy have been studied by the in situ neutron diffraction technique combined with the elastic-plastic self-consistent (EPSC) simulation. A compressive external load is applied along the thickness direction of the rolled plate, which is called through-thickness compression. Electron back-scattered diffraction is used to analyze the texture evolution during the plastic deformation. Transmission electron microscopy (TEM) is used to measure the distribution of the defects in the deformed sample. The EPSC simulation provides the deformation mechanism quantitatively by fitting the in situ neutron diffraction data, and the simulated results is confirmed by the TEM observations. Results show that when the true strain is small (less than 0.55%), prismatic {1010}20> (a> type) slip dominates; however, as the plastic strain is increased, the percentage of pyramidal {1011}23> (c+a> type) slip becomes larger than that of prismatic {1010}20> (a> type) slip, and the pyramidal {1011}20> (a> type) slip and pyramidal {1012}20> (a> type) slip may exist.
-
Keywords:
- zirconium alloy /
- in situ neutron diffraction /
- elastic-plastic self-consistent simulation /
- deformation mechanism
[1] Northwood D O 1985 Mater. Des. 6 58
[2] Fisher E S, Renken C J 1964 Phys. Rev. 135 A482
[3] Tome C N, Maudlin P J, Lebensohn R A, Kaschner G C 2001 Acta Mater. 49 3085
[4] McCabe R J, Cerreta E K, Misra A, Kaschner G C, Tome C N 2006 Philos. Mag. 86 3595
[5] Beyerlein I J, Tome C N 2008 Int. J. Plast. 24 867
[6] Noyan I C, Cohen J B 1987 Residual Stress Measurement by Diffraction and Interpretation (New York: Springer)
[7] Pang J W L, Holden T M, Turner P A, Mason T E 1999 Acta Mater. 47 373
[8] Gou C, Cheng Y F, Chen D F, Hu B P, Wang Y Z, Liu G C, Yan Q W, Zhang P L, Sun X D, Wei Y N, Sun K 1994 Chin. Phys. 3 764
[9] Wei B 2013 Chin. Phys. B 22 087405
[10] Allen A, Andreani C, Hutchings M T, Windsor C G 1981 NDT Int. 14 249
[11] Withers P J 2007 Comptes. Rendus. Phys. 8 806
[12] Albertini G, Bruno G, Carrado A, Fiori F, Rogante M, Rustichelli F 1999 Meas. Sci. Technol. 10 R56
[13] Stone H J, Withers P J, Holden T M, Roberts S M, Reed R C 1999 Metall. Mater. Trans. A 30 1797
[14] Jia N, Peng L R, Brown D W, Clausen B, Wang Y D 2008 Metall. Mater. Trans. A 39 3134
[15] Muránsky O, Sittner P, Zrnik J, Oliver E C 2008 Metall. Mater. Trans. A 39 3097
[16] Davydov V, Lukas P, Strunz P, Kuzel R 2009 J. Phys.: Condens. Matter 21 095407
[17] Proust G, Kaschner G C, Beyerlein I J, Clausen B, Brown D W, McCabe R J, Tome C N 2010 Exp. Mech. 50 125
[18] Ma D, Stoica A D, An K, Yang L, Bei H, Mills R A, Skorpenske H, Wang X L 2011 Metall. Mater. Trans. A 42 1444
[19] Eshelby J D 1957 Proc. R. Soc. Lond. A 241 376
[20] Hill R 1965 J. Mech. Phys. Solids 13 89
[21] Hutchinson J W 1976 Proc. R. Soc. Lond. A 348 101
[22] Lebensohn R A, Tome C N 1993 Acta Metall. Mater. 41 2611
[23] Proust G, Tome C N, Kaschner G C 2007 Acta Mater. 55 2137
[24] Gloaguen D, Berchi T, Girard E, Guillen R 2007 Acta Mater. 55 4369
[25] Li H J, Sun G A, Woo W, Gong J, Chen B, Wang Y D, Fu Y Q, Huang C Q, Xie L, Peng S M 2014 J. Nucl. Mater. 446 134
[26] Hao X P, Wang B Y, Yu R S, Wei L 2007 Acta Phys. Sin. 56 6543 (in Chinese) [郝小鹏, 王宝义, 于润升, 魏龙 2007 56 6543]
[27] Hutchinson J W 1970 Proc. R. Soc. Lond. A 319 247
[28] Turner P A, Christodoulou N, Tomé C N 1995 Int. J. Plast. 11 251
[29] Tenckhoff E 1988 Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy (Philadelphia: Special Technical Publication) pp19-23
[30] Holt R A, Causey A R 1987 J. Nucl. Mater. 150 306
[31] Wei Y L, Godfrey A, Liu W, Liu Q, Huang X, Hansen N, Winther G 2011 Scripta Mater. 65 355
[32] Caillard D, Couret A 2002 Mat. Sci. Eng. A 322 108
[33] Bacon D J, Vitek V 2002 Metall. Mater. Trans. A 33 721
[34] Monnet G, Devincre B, Kubin L P 2004 Acta Mater. 52 4317
-
[1] Northwood D O 1985 Mater. Des. 6 58
[2] Fisher E S, Renken C J 1964 Phys. Rev. 135 A482
[3] Tome C N, Maudlin P J, Lebensohn R A, Kaschner G C 2001 Acta Mater. 49 3085
[4] McCabe R J, Cerreta E K, Misra A, Kaschner G C, Tome C N 2006 Philos. Mag. 86 3595
[5] Beyerlein I J, Tome C N 2008 Int. J. Plast. 24 867
[6] Noyan I C, Cohen J B 1987 Residual Stress Measurement by Diffraction and Interpretation (New York: Springer)
[7] Pang J W L, Holden T M, Turner P A, Mason T E 1999 Acta Mater. 47 373
[8] Gou C, Cheng Y F, Chen D F, Hu B P, Wang Y Z, Liu G C, Yan Q W, Zhang P L, Sun X D, Wei Y N, Sun K 1994 Chin. Phys. 3 764
[9] Wei B 2013 Chin. Phys. B 22 087405
[10] Allen A, Andreani C, Hutchings M T, Windsor C G 1981 NDT Int. 14 249
[11] Withers P J 2007 Comptes. Rendus. Phys. 8 806
[12] Albertini G, Bruno G, Carrado A, Fiori F, Rogante M, Rustichelli F 1999 Meas. Sci. Technol. 10 R56
[13] Stone H J, Withers P J, Holden T M, Roberts S M, Reed R C 1999 Metall. Mater. Trans. A 30 1797
[14] Jia N, Peng L R, Brown D W, Clausen B, Wang Y D 2008 Metall. Mater. Trans. A 39 3134
[15] Muránsky O, Sittner P, Zrnik J, Oliver E C 2008 Metall. Mater. Trans. A 39 3097
[16] Davydov V, Lukas P, Strunz P, Kuzel R 2009 J. Phys.: Condens. Matter 21 095407
[17] Proust G, Kaschner G C, Beyerlein I J, Clausen B, Brown D W, McCabe R J, Tome C N 2010 Exp. Mech. 50 125
[18] Ma D, Stoica A D, An K, Yang L, Bei H, Mills R A, Skorpenske H, Wang X L 2011 Metall. Mater. Trans. A 42 1444
[19] Eshelby J D 1957 Proc. R. Soc. Lond. A 241 376
[20] Hill R 1965 J. Mech. Phys. Solids 13 89
[21] Hutchinson J W 1976 Proc. R. Soc. Lond. A 348 101
[22] Lebensohn R A, Tome C N 1993 Acta Metall. Mater. 41 2611
[23] Proust G, Tome C N, Kaschner G C 2007 Acta Mater. 55 2137
[24] Gloaguen D, Berchi T, Girard E, Guillen R 2007 Acta Mater. 55 4369
[25] Li H J, Sun G A, Woo W, Gong J, Chen B, Wang Y D, Fu Y Q, Huang C Q, Xie L, Peng S M 2014 J. Nucl. Mater. 446 134
[26] Hao X P, Wang B Y, Yu R S, Wei L 2007 Acta Phys. Sin. 56 6543 (in Chinese) [郝小鹏, 王宝义, 于润升, 魏龙 2007 56 6543]
[27] Hutchinson J W 1970 Proc. R. Soc. Lond. A 319 247
[28] Turner P A, Christodoulou N, Tomé C N 1995 Int. J. Plast. 11 251
[29] Tenckhoff E 1988 Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy (Philadelphia: Special Technical Publication) pp19-23
[30] Holt R A, Causey A R 1987 J. Nucl. Mater. 150 306
[31] Wei Y L, Godfrey A, Liu W, Liu Q, Huang X, Hansen N, Winther G 2011 Scripta Mater. 65 355
[32] Caillard D, Couret A 2002 Mat. Sci. Eng. A 322 108
[33] Bacon D J, Vitek V 2002 Metall. Mater. Trans. A 33 721
[34] Monnet G, Devincre B, Kubin L P 2004 Acta Mater. 52 4317
计量
- 文章访问数: 5472
- PDF下载量: 504
- 被引次数: 0