搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含Nb或Ge的锆合金表面氧吸附行为的第一性原理研究

张海辉 李晓娣 谢耀平 胡丽娟 姚美意

引用本文:
Citation:

含Nb或Ge的锆合金表面氧吸附行为的第一性原理研究

张海辉, 李晓娣, 谢耀平, 胡丽娟, 姚美意

First-principle study of the oxygen adsorption on Zr surface with Nb or Ge

Zhang Hai-Hui, Li Xiao-Di, Xie Yao-Ping, Hu Li-Juan, Yao Mei-Yi
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法, 研究了纯锆表面和含Nb或Ge锆合金表面上氧的吸附性质. 结果表明, Nb和Ge对Zr(0001), (1120)和(1010)表面吸附性质的影响各不相同. 根据计算得到的偏聚能结果, Nb和Ge迁移到Zr(0001)表面比迁移到其他两个表面更容易, 而Nb和Ge 都可以降低Zr(0001)表面对氧原子的吸附能力, 因此这两种元素都能抑制锆合金的初始氧化. 进一步的电子结构分析发现, Nb和Ge改变表面对氧原子的吸附能力是通过改变表面d能带的分布来实现的.
    It is observed that the addition of Nb or Ge to Zr alloy can improve its corrosion resistance. Because of the extreme importance of the mechanism of oxidation to corrosion properties of Zr alloy, we systematically investigate the O adsorption properties on pure Zr surface and Zr surface with Nb or Ge using first-principle calculations based on density functional theory. Firstly, we present the absorption energies to reveal the influences of Nb and Ge on the O absorption capacity of Zr surfaces, resepctively. According to the calculated absorption energies, we find that Nb and Ge reduce the oxygen absorption capacities of most of surfaces, and the only exception is that Nb enhances the oxygen absorption capacity of Zr(1120) surface. Moreover, the absorption energy of O at favorable site on Zr(0001) surface is much lower than on Zr(1010) or (1120) surface. Therefore, the initial oxidation of polycrystalline Zr should occur at Zr(0001) surface and the absorption capacity of this surface takes a predominant role in the initial oxidation of polycrystalline surface. Secondly, the segregation of Nb or Ge in Zr alloy is anisotropic. We find that the segregation of Ge to surface is exothermic, while the segregation of Nb to surface is endothermic. Nb and Ge migrate to Zr(0001) surface more easily than to Zr(1120) and Zr(1010) surfaces. Therefore, the influence of Nb or Ge on absorption property of Zr(0001) is much larger than that of Zr(1010) or (1120) surface. Based on the adsorption and segregation properties of Nb and Ge on Zr surfaces, both Nb and Ge can reduce the oxygen absorption capacity of Zr surface and inhibit the initial oxidation of Zr alloy surface, which can be used to understand the experimental observation that Nb and Ge can improve the corrosion resistance of Zr alloy. Finally, the electronic structure analysis shows that the influences of Nb and Ge on oxygen adsorption capacity of Zr surface are exerted by changing the d-band distribution. According to Hammer-Norskov d-band center theory, the absorption energy of absorpate on transition metal surface is mainly determined by d-band center. The addition of Nb or Ge to the Zr surface changes the location of d-band of the surface, which results in the variation of absorption energy of O atom on the Zr surface. For absorption at top site on each surface, it is found that the absorption energy of O only depends on the d-band center of the surface atom below the O atoms. However, for absorption at favorable sites on each surface, the absorption energy of O atom is influenced not only by the d-band center of surface atom, but also by atomic structural properties of the surface.
      通信作者: 谢耀平, ypxie@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51301102)和上海市自然科学基金(批准号: 15ZR1416000)资助的课题.
      Corresponding author: Xie Yao-Ping, ypxie@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51301102), and the Shanghai Natural Science Foundation of Shanghai, China (Grant No. 15ZR1416000).
    [1]

    Liu J Z 2007 Structure Nuclear Materials (Beijing: Chemical Industry Press) pp19-22 (in Chinese) [刘建章 2007核结构材料(北京: 化学工业出版社) 第19-22页]

    [2]

    Zhou B X, Li Q, Yao M Y, Xia S, Liu W Q, Zhu Y L 2007 Rare Met. Mater. Eng. 36 1129 (in Chinese) [周邦新, 李强, 姚美意, 夏爽, 刘文庆, 褚于良 2007 稀有金属材料与工程 36 1129]

    [3]

    Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X 2011 Acta Metall. Sin. 47 163 (in Chinese) [李士炉, 姚美意, 张欣, 耿建桥, 彭剑超, 周邦新 2011 金属学报 47 163]

    [4]

    Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H 2005 Atom Energ. Sci. Technol. (suppl.) 39 1 (in Chinese) [赵文金, 周邦新, 苗志, 彭倩, 蒋有荣, 蒋宏曼, 庞华 2005 原子能科学技术 (增刊) 39 1]

    [5]

    Kruger R M, Adamson R B, Brenner S S 1992 J. Nucl. Mater. 189 193

    [6]

    Zhou B X 1993 Chin. J. Nucl. Sci. Eng. 13 51 (in Chinese) [周邦新 1993 核科学与工程 13 51]

    [7]

    Liu W Q, Geng X, Liu Q D, Li Q, Yao M Y, Zhou B X 2008 Rare Met. Mater. Eng. 37 509 (in Chinese) [刘文庆, 耿迅, 刘庆冬, 李强, 姚美意, 周邦新 2008 稀有金属材料与工程 37 509]

    [8]

    Gong W J, Zhang H L, Wu C F, Tian H, Wang X T 2013 Corros. Sci. 77 391

    [9]

    Huang J, Yao M Y, Gao C Y, Liang X, Peng J C, Zhang J L, Zhou B X 2015 Corros. Sci. 99 172

    [10]

    Park J Y, Kim H G, Jeong Y H, Jung Y H 2004 J. Nucl. Mater. 335 433

    [11]

    Qin W, Nam C, Li H L, Szpunar J A 2007 Acta Mater. 55 1695

    [12]

    Tewari R, Srivastava D, Dey G K, Chakravarty J K, Banerjee S 2008 J. Nucl. Mater. 383 153

    [13]

    Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L 2009 Corros. Prot. 30 589 (in Chinese) [周邦新, 李强, 姚美意, 刘文庆, 褚于良 2009 腐蚀与防护 30 589]

    [14]

    Garner A, Gholinia A, Frankel P, Gass M, MacLaren I, Preuss M 2014 Acta Mater. 80 159

    [15]

    Gabory B D, Motta A T, Wang K 2015 J. Nucl. Mater. 456 272

    [16]

    Yao M Y, Gao C Y, Huang J, Peng J C, Liang X, Zhang J L, Zhou B X, Li Q 2015 Corros. Sci. 100 169

    [17]

    Nikulina A V, Markelov V A 1996 Proceedings of the 11th International Symposium on Zirconium in the Nuclear Industry Garmisch Partenkirchen, Germany, September 11-14, 1995 p785

    [18]

    Jung Y I, Lee M H, Kim H G, Park J Y, Jeong Y H 2009 J. Alloys Compd. 479 423

    [19]

    Yao M Y, Zhou B X, Li Q, Xia S, Liu W Q 2008 Shanghai Met. 30 1 (in Chinese) [姚美意, 周邦新, 李强, 夏爽, 刘文庆 2008 上海金属 30 1]

    [20]

    Sabol G P 2005 Proceedings of the 14th International Symposium on Zirconium in the Nuclear Industry Stockholm, Sweden, June 13-17, 2004 p3

    [21]

    Zhou B X, Zhao W J, Mao Z 1997 New Zirconium Alloy Research (Beijing: Chemical Industry Press) p183 (in Chinese) [周邦新, 赵文金, 苗志 1997 新锆合金的研究 (北京: 化学工业出版社) 第183页]

    [22]

    Zhao W J 2004 Rare Met. Lett. 23 15 (in Chinese) [赵文金 2004 稀有金属快报 23 15]

    [23]

    Park J Y, Choi B K, Yoo S J, Jeong Y H 2006 J. Nucl. Mater. 359 59

    [24]

    Yao M Y, Li S L, Zhang X, Zhou B X 2011 Acta Metall. Sin. 47 865 (in Chinese) [姚美意, 李士炉, 张欣, 周邦新 2011 金属学报 47 865]

    [25]

    Jeong Y H, Kim H G, Kim D J, Choi B K, Kim J H 2003 J. Nucl. Mater. 323 72

    [26]

    Xie X F, Zhang J L, Zhu L, Yao M Y, Zhou B X, Peng J C 2012 Acta Metall. Sin. 48 1487 (in Chinese) [谢兴飞, 张金龙, 朱莉, 姚美意, 周邦新, 彭剑超 2012 金属学报 48 1487]

    [27]

    Zhang J L, Xie X F, Yao M Y, Zhou B X, Peng J C, Li Q 2013 Chin. J. Nonferrous Met. 23 1542 (in Chinese) [张金龙, 谢兴飞, 姚美意, 周邦新, 彭剑超, 李强 2013 中国有色金属学报 23 1542]

    [28]

    Zhang J L, Hu Y, Tu L M, Sun F T, Yao M Y, Zhou B X 2016 Corros. Sci. 102 161

    [29]

    Sun J P, Zhou K L, Liang X D 2016 Acta Phys. Sin. 65 18201 (in Chinese) [孙建平, 周科良, 梁晓东 2016 65 018201]

    [30]

    Ma D W, Wang Z, Cui H T, Zeng J, He C Z, Lu Z S 2016 Sens. Actuators B: Chem. 224 372

    [31]

    Yan J, Xu W Y, Guo H, Gong Y, Mi Y M, Zhao X X 2015 Acta Phys. Sin. 64 016802 (in Chinese) [闫静, 徐位云郭辉, 龚毓, 宓一鸣, 赵新新 2015 64 016802]

    [32]

    Luo H J, Cai J Q, Tao X M, Tan M Q 2015 Comput. Mater. Sci. 101 47

    [33]

    Zeng W, Liu T M, Li T M, Xie B J 2015 Physica E: Low-dimensional Systems and Nanostructures 67 59

    [34]

    Wang G J, Huang F, Chen X B, Gong C L, Liu H, Wen S, Cheng F, Zheng X, Zheng G W, Pan M 2015 Catal. Commun. 69 16

    [35]

    Zhang P, Wang S X, Zhao J, He C H, Zhang P 2011 J. Nucl. Mater. 418 159

    [36]

    Yamamoto M, Chan C T, Ho K M, Naito S 1996 Phys. Rev. B 54 14111

    [37]

    Jomard G, Petit T, Magaud L, Pasturel A 1999 Phys. Rev. B 60 15624

    [38]

    Jomard G, Petit T, Magaud L, Pasturel A, Kresse G, Hafner J 2000 Mol. Simulat. 24 111

    [39]

    Jomard G, Pasturel A 2001 Appl. Surf. Sci. 177 230

    [40]

    Wang F H, Liu S Y, Shang J X, Zhou Y S, Li Z Y, Yang J L 2008 Surf. Sci. 602 2212

    [41]

    Yao R, Wang F H, Zhou Y S 2009 Acta Phys. Sin. 58 177 (in Chinese) [姚蕊, 王福合, 周云松 2009 58 177]

    [42]

    Glazoff M V, Tokuhiro A, Rashkeev S N, Sabharwall P 2014 J. Nucl. Mater. 444 65

    [43]

    Chiang T W, Chernatynskiy A, Noordhoek M J, Sinnott S B, Phillpot S R 2015 Comp. Mater. Sci. 98 112

    [44]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [45]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [46]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15

    [47]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136B 864

    [48]

    Kohn W, Sham L J 1965 Phys. Rev. 140A 1133

    [49]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [50]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [51]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [52]

    Kittel C (translated by Xiang J Z, Wu X H) 2012 Introduction to Solid State Physics (Eighth Ed.) (Beijing: Chemical Industry Press) p15 (in Chinese) [基泰尔 C 著 (项金钟, 吴兴惠 译) 2012 固体物理导论 (第八版) (北京: 化学工业出版社) 第15页]

    [53]

    Zhang C S, Flinn B J, Mitchell I V, Norton P R 1991 Surf. Sci. 245 373

    [54]

    Zhang C S, Li B, Norton P R 1994 Surf. Sci. 313 308

    [55]

    Kim H G, Kim T H, Jeong Y H 2002 J. Nucl. Mater. 306 44

    [56]

    Bakradze G, Jeurgens L P H, Mittemeijer E J 2010 Surf. Interface Anal. 42 588

    [57]

    Bakradze G, Jeurgens L P H, Mittemeijer E J 2011 J. Appl. Phys. 110 024904

    [58]

    Hammer B, Norskov J K 2000 Adv. Catal. 45 71

  • [1]

    Liu J Z 2007 Structure Nuclear Materials (Beijing: Chemical Industry Press) pp19-22 (in Chinese) [刘建章 2007核结构材料(北京: 化学工业出版社) 第19-22页]

    [2]

    Zhou B X, Li Q, Yao M Y, Xia S, Liu W Q, Zhu Y L 2007 Rare Met. Mater. Eng. 36 1129 (in Chinese) [周邦新, 李强, 姚美意, 夏爽, 刘文庆, 褚于良 2007 稀有金属材料与工程 36 1129]

    [3]

    Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X 2011 Acta Metall. Sin. 47 163 (in Chinese) [李士炉, 姚美意, 张欣, 耿建桥, 彭剑超, 周邦新 2011 金属学报 47 163]

    [4]

    Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H 2005 Atom Energ. Sci. Technol. (suppl.) 39 1 (in Chinese) [赵文金, 周邦新, 苗志, 彭倩, 蒋有荣, 蒋宏曼, 庞华 2005 原子能科学技术 (增刊) 39 1]

    [5]

    Kruger R M, Adamson R B, Brenner S S 1992 J. Nucl. Mater. 189 193

    [6]

    Zhou B X 1993 Chin. J. Nucl. Sci. Eng. 13 51 (in Chinese) [周邦新 1993 核科学与工程 13 51]

    [7]

    Liu W Q, Geng X, Liu Q D, Li Q, Yao M Y, Zhou B X 2008 Rare Met. Mater. Eng. 37 509 (in Chinese) [刘文庆, 耿迅, 刘庆冬, 李强, 姚美意, 周邦新 2008 稀有金属材料与工程 37 509]

    [8]

    Gong W J, Zhang H L, Wu C F, Tian H, Wang X T 2013 Corros. Sci. 77 391

    [9]

    Huang J, Yao M Y, Gao C Y, Liang X, Peng J C, Zhang J L, Zhou B X 2015 Corros. Sci. 99 172

    [10]

    Park J Y, Kim H G, Jeong Y H, Jung Y H 2004 J. Nucl. Mater. 335 433

    [11]

    Qin W, Nam C, Li H L, Szpunar J A 2007 Acta Mater. 55 1695

    [12]

    Tewari R, Srivastava D, Dey G K, Chakravarty J K, Banerjee S 2008 J. Nucl. Mater. 383 153

    [13]

    Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L 2009 Corros. Prot. 30 589 (in Chinese) [周邦新, 李强, 姚美意, 刘文庆, 褚于良 2009 腐蚀与防护 30 589]

    [14]

    Garner A, Gholinia A, Frankel P, Gass M, MacLaren I, Preuss M 2014 Acta Mater. 80 159

    [15]

    Gabory B D, Motta A T, Wang K 2015 J. Nucl. Mater. 456 272

    [16]

    Yao M Y, Gao C Y, Huang J, Peng J C, Liang X, Zhang J L, Zhou B X, Li Q 2015 Corros. Sci. 100 169

    [17]

    Nikulina A V, Markelov V A 1996 Proceedings of the 11th International Symposium on Zirconium in the Nuclear Industry Garmisch Partenkirchen, Germany, September 11-14, 1995 p785

    [18]

    Jung Y I, Lee M H, Kim H G, Park J Y, Jeong Y H 2009 J. Alloys Compd. 479 423

    [19]

    Yao M Y, Zhou B X, Li Q, Xia S, Liu W Q 2008 Shanghai Met. 30 1 (in Chinese) [姚美意, 周邦新, 李强, 夏爽, 刘文庆 2008 上海金属 30 1]

    [20]

    Sabol G P 2005 Proceedings of the 14th International Symposium on Zirconium in the Nuclear Industry Stockholm, Sweden, June 13-17, 2004 p3

    [21]

    Zhou B X, Zhao W J, Mao Z 1997 New Zirconium Alloy Research (Beijing: Chemical Industry Press) p183 (in Chinese) [周邦新, 赵文金, 苗志 1997 新锆合金的研究 (北京: 化学工业出版社) 第183页]

    [22]

    Zhao W J 2004 Rare Met. Lett. 23 15 (in Chinese) [赵文金 2004 稀有金属快报 23 15]

    [23]

    Park J Y, Choi B K, Yoo S J, Jeong Y H 2006 J. Nucl. Mater. 359 59

    [24]

    Yao M Y, Li S L, Zhang X, Zhou B X 2011 Acta Metall. Sin. 47 865 (in Chinese) [姚美意, 李士炉, 张欣, 周邦新 2011 金属学报 47 865]

    [25]

    Jeong Y H, Kim H G, Kim D J, Choi B K, Kim J H 2003 J. Nucl. Mater. 323 72

    [26]

    Xie X F, Zhang J L, Zhu L, Yao M Y, Zhou B X, Peng J C 2012 Acta Metall. Sin. 48 1487 (in Chinese) [谢兴飞, 张金龙, 朱莉, 姚美意, 周邦新, 彭剑超 2012 金属学报 48 1487]

    [27]

    Zhang J L, Xie X F, Yao M Y, Zhou B X, Peng J C, Li Q 2013 Chin. J. Nonferrous Met. 23 1542 (in Chinese) [张金龙, 谢兴飞, 姚美意, 周邦新, 彭剑超, 李强 2013 中国有色金属学报 23 1542]

    [28]

    Zhang J L, Hu Y, Tu L M, Sun F T, Yao M Y, Zhou B X 2016 Corros. Sci. 102 161

    [29]

    Sun J P, Zhou K L, Liang X D 2016 Acta Phys. Sin. 65 18201 (in Chinese) [孙建平, 周科良, 梁晓东 2016 65 018201]

    [30]

    Ma D W, Wang Z, Cui H T, Zeng J, He C Z, Lu Z S 2016 Sens. Actuators B: Chem. 224 372

    [31]

    Yan J, Xu W Y, Guo H, Gong Y, Mi Y M, Zhao X X 2015 Acta Phys. Sin. 64 016802 (in Chinese) [闫静, 徐位云郭辉, 龚毓, 宓一鸣, 赵新新 2015 64 016802]

    [32]

    Luo H J, Cai J Q, Tao X M, Tan M Q 2015 Comput. Mater. Sci. 101 47

    [33]

    Zeng W, Liu T M, Li T M, Xie B J 2015 Physica E: Low-dimensional Systems and Nanostructures 67 59

    [34]

    Wang G J, Huang F, Chen X B, Gong C L, Liu H, Wen S, Cheng F, Zheng X, Zheng G W, Pan M 2015 Catal. Commun. 69 16

    [35]

    Zhang P, Wang S X, Zhao J, He C H, Zhang P 2011 J. Nucl. Mater. 418 159

    [36]

    Yamamoto M, Chan C T, Ho K M, Naito S 1996 Phys. Rev. B 54 14111

    [37]

    Jomard G, Petit T, Magaud L, Pasturel A 1999 Phys. Rev. B 60 15624

    [38]

    Jomard G, Petit T, Magaud L, Pasturel A, Kresse G, Hafner J 2000 Mol. Simulat. 24 111

    [39]

    Jomard G, Pasturel A 2001 Appl. Surf. Sci. 177 230

    [40]

    Wang F H, Liu S Y, Shang J X, Zhou Y S, Li Z Y, Yang J L 2008 Surf. Sci. 602 2212

    [41]

    Yao R, Wang F H, Zhou Y S 2009 Acta Phys. Sin. 58 177 (in Chinese) [姚蕊, 王福合, 周云松 2009 58 177]

    [42]

    Glazoff M V, Tokuhiro A, Rashkeev S N, Sabharwall P 2014 J. Nucl. Mater. 444 65

    [43]

    Chiang T W, Chernatynskiy A, Noordhoek M J, Sinnott S B, Phillpot S R 2015 Comp. Mater. Sci. 98 112

    [44]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115

    [45]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169

    [46]

    Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15

    [47]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136B 864

    [48]

    Kohn W, Sham L J 1965 Phys. Rev. 140A 1133

    [49]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [50]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [51]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [52]

    Kittel C (translated by Xiang J Z, Wu X H) 2012 Introduction to Solid State Physics (Eighth Ed.) (Beijing: Chemical Industry Press) p15 (in Chinese) [基泰尔 C 著 (项金钟, 吴兴惠 译) 2012 固体物理导论 (第八版) (北京: 化学工业出版社) 第15页]

    [53]

    Zhang C S, Flinn B J, Mitchell I V, Norton P R 1991 Surf. Sci. 245 373

    [54]

    Zhang C S, Li B, Norton P R 1994 Surf. Sci. 313 308

    [55]

    Kim H G, Kim T H, Jeong Y H 2002 J. Nucl. Mater. 306 44

    [56]

    Bakradze G, Jeurgens L P H, Mittemeijer E J 2010 Surf. Interface Anal. 42 588

    [57]

    Bakradze G, Jeurgens L P H, Mittemeijer E J 2011 J. Appl. Phys. 110 024904

    [58]

    Hammer B, Norskov J K 2000 Adv. Catal. 45 71

  • [1] 彭婕, 张嗣杰, 王苛, DoveMartin. 经式8-羟基喹啉铝的光谱与激发性质密度泛函.  , 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [2] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究.  , 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [3] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究.  , 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [4] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究.  , 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [6] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究.  , 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [7] 李洪佳, 孙光爱, 龚建, 陈波, 王虹, 李建, 庞蓓蓓, 张莹, 彭述明. Zr-4合金压缩形变行为的研究.  , 2014, 63(23): 236101. doi: 10.7498/aps.63.236101
    [8] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变.  , 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [9] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究.  , 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [10] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究.  , 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [11] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究.  , 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [13] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究.  , 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [14] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究.  , 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [15] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质.  , 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [16] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究.  , 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [18] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性.  , 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [19] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
计量
  • 文章访问数:  7165
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-15
  • 修回日期:  2016-01-28
  • 刊出日期:  2016-05-05

/

返回文章
返回
Baidu
map