-
It is observed that the addition of Nb or Ge to Zr alloy can improve its corrosion resistance. Because of the extreme importance of the mechanism of oxidation to corrosion properties of Zr alloy, we systematically investigate the O adsorption properties on pure Zr surface and Zr surface with Nb or Ge using first-principle calculations based on density functional theory. Firstly, we present the absorption energies to reveal the influences of Nb and Ge on the O absorption capacity of Zr surfaces, resepctively. According to the calculated absorption energies, we find that Nb and Ge reduce the oxygen absorption capacities of most of surfaces, and the only exception is that Nb enhances the oxygen absorption capacity of Zr(1120) surface. Moreover, the absorption energy of O at favorable site on Zr(0001) surface is much lower than on Zr(1010) or (1120) surface. Therefore, the initial oxidation of polycrystalline Zr should occur at Zr(0001) surface and the absorption capacity of this surface takes a predominant role in the initial oxidation of polycrystalline surface. Secondly, the segregation of Nb or Ge in Zr alloy is anisotropic. We find that the segregation of Ge to surface is exothermic, while the segregation of Nb to surface is endothermic. Nb and Ge migrate to Zr(0001) surface more easily than to Zr(1120) and Zr(1010) surfaces. Therefore, the influence of Nb or Ge on absorption property of Zr(0001) is much larger than that of Zr(1010) or (1120) surface. Based on the adsorption and segregation properties of Nb and Ge on Zr surfaces, both Nb and Ge can reduce the oxygen absorption capacity of Zr surface and inhibit the initial oxidation of Zr alloy surface, which can be used to understand the experimental observation that Nb and Ge can improve the corrosion resistance of Zr alloy. Finally, the electronic structure analysis shows that the influences of Nb and Ge on oxygen adsorption capacity of Zr surface are exerted by changing the d-band distribution. According to Hammer-Norskov d-band center theory, the absorption energy of absorpate on transition metal surface is mainly determined by d-band center. The addition of Nb or Ge to the Zr surface changes the location of d-band of the surface, which results in the variation of absorption energy of O atom on the Zr surface. For absorption at top site on each surface, it is found that the absorption energy of O only depends on the d-band center of the surface atom below the O atoms. However, for absorption at favorable sites on each surface, the absorption energy of O atom is influenced not only by the d-band center of surface atom, but also by atomic structural properties of the surface.
[1] Liu J Z 2007 Structure Nuclear Materials (Beijing: Chemical Industry Press) pp19-22 (in Chinese) [刘建章 2007核结构材料(北京: 化学工业出版社) 第19-22页]
[2] Zhou B X, Li Q, Yao M Y, Xia S, Liu W Q, Zhu Y L 2007 Rare Met. Mater. Eng. 36 1129 (in Chinese) [周邦新, 李强, 姚美意, 夏爽, 刘文庆, 褚于良 2007 稀有金属材料与工程 36 1129]
[3] Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X 2011 Acta Metall. Sin. 47 163 (in Chinese) [李士炉, 姚美意, 张欣, 耿建桥, 彭剑超, 周邦新 2011 金属学报 47 163]
[4] Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H 2005 Atom Energ. Sci. Technol. (suppl.) 39 1 (in Chinese) [赵文金, 周邦新, 苗志, 彭倩, 蒋有荣, 蒋宏曼, 庞华 2005 原子能科学技术 (增刊) 39 1]
[5] Kruger R M, Adamson R B, Brenner S S 1992 J. Nucl. Mater. 189 193
[6] Zhou B X 1993 Chin. J. Nucl. Sci. Eng. 13 51 (in Chinese) [周邦新 1993 核科学与工程 13 51]
[7] Liu W Q, Geng X, Liu Q D, Li Q, Yao M Y, Zhou B X 2008 Rare Met. Mater. Eng. 37 509 (in Chinese) [刘文庆, 耿迅, 刘庆冬, 李强, 姚美意, 周邦新 2008 稀有金属材料与工程 37 509]
[8] Gong W J, Zhang H L, Wu C F, Tian H, Wang X T 2013 Corros. Sci. 77 391
[9] Huang J, Yao M Y, Gao C Y, Liang X, Peng J C, Zhang J L, Zhou B X 2015 Corros. Sci. 99 172
[10] Park J Y, Kim H G, Jeong Y H, Jung Y H 2004 J. Nucl. Mater. 335 433
[11] Qin W, Nam C, Li H L, Szpunar J A 2007 Acta Mater. 55 1695
[12] Tewari R, Srivastava D, Dey G K, Chakravarty J K, Banerjee S 2008 J. Nucl. Mater. 383 153
[13] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L 2009 Corros. Prot. 30 589 (in Chinese) [周邦新, 李强, 姚美意, 刘文庆, 褚于良 2009 腐蚀与防护 30 589]
[14] Garner A, Gholinia A, Frankel P, Gass M, MacLaren I, Preuss M 2014 Acta Mater. 80 159
[15] Gabory B D, Motta A T, Wang K 2015 J. Nucl. Mater. 456 272
[16] Yao M Y, Gao C Y, Huang J, Peng J C, Liang X, Zhang J L, Zhou B X, Li Q 2015 Corros. Sci. 100 169
[17] Nikulina A V, Markelov V A 1996 Proceedings of the 11th International Symposium on Zirconium in the Nuclear Industry Garmisch Partenkirchen, Germany, September 11-14, 1995 p785
[18] Jung Y I, Lee M H, Kim H G, Park J Y, Jeong Y H 2009 J. Alloys Compd. 479 423
[19] Yao M Y, Zhou B X, Li Q, Xia S, Liu W Q 2008 Shanghai Met. 30 1 (in Chinese) [姚美意, 周邦新, 李强, 夏爽, 刘文庆 2008 上海金属 30 1]
[20] Sabol G P 2005 Proceedings of the 14th International Symposium on Zirconium in the Nuclear Industry Stockholm, Sweden, June 13-17, 2004 p3
[21] Zhou B X, Zhao W J, Mao Z 1997 New Zirconium Alloy Research (Beijing: Chemical Industry Press) p183 (in Chinese) [周邦新, 赵文金, 苗志 1997 新锆合金的研究 (北京: 化学工业出版社) 第183页]
[22] Zhao W J 2004 Rare Met. Lett. 23 15 (in Chinese) [赵文金 2004 稀有金属快报 23 15]
[23] Park J Y, Choi B K, Yoo S J, Jeong Y H 2006 J. Nucl. Mater. 359 59
[24] Yao M Y, Li S L, Zhang X, Zhou B X 2011 Acta Metall. Sin. 47 865 (in Chinese) [姚美意, 李士炉, 张欣, 周邦新 2011 金属学报 47 865]
[25] Jeong Y H, Kim H G, Kim D J, Choi B K, Kim J H 2003 J. Nucl. Mater. 323 72
[26] Xie X F, Zhang J L, Zhu L, Yao M Y, Zhou B X, Peng J C 2012 Acta Metall. Sin. 48 1487 (in Chinese) [谢兴飞, 张金龙, 朱莉, 姚美意, 周邦新, 彭剑超 2012 金属学报 48 1487]
[27] Zhang J L, Xie X F, Yao M Y, Zhou B X, Peng J C, Li Q 2013 Chin. J. Nonferrous Met. 23 1542 (in Chinese) [张金龙, 谢兴飞, 姚美意, 周邦新, 彭剑超, 李强 2013 中国有色金属学报 23 1542]
[28] Zhang J L, Hu Y, Tu L M, Sun F T, Yao M Y, Zhou B X 2016 Corros. Sci. 102 161
[29] Sun J P, Zhou K L, Liang X D 2016 Acta Phys. Sin. 65 18201 (in Chinese) [孙建平, 周科良, 梁晓东 2016 65 018201]
[30] Ma D W, Wang Z, Cui H T, Zeng J, He C Z, Lu Z S 2016 Sens. Actuators B: Chem. 224 372
[31] Yan J, Xu W Y, Guo H, Gong Y, Mi Y M, Zhao X X 2015 Acta Phys. Sin. 64 016802 (in Chinese) [闫静, 徐位云郭辉, 龚毓, 宓一鸣, 赵新新 2015 64 016802]
[32] Luo H J, Cai J Q, Tao X M, Tan M Q 2015 Comput. Mater. Sci. 101 47
[33] Zeng W, Liu T M, Li T M, Xie B J 2015 Physica E: Low-dimensional Systems and Nanostructures 67 59
[34] Wang G J, Huang F, Chen X B, Gong C L, Liu H, Wen S, Cheng F, Zheng X, Zheng G W, Pan M 2015 Catal. Commun. 69 16
[35] Zhang P, Wang S X, Zhao J, He C H, Zhang P 2011 J. Nucl. Mater. 418 159
[36] Yamamoto M, Chan C T, Ho K M, Naito S 1996 Phys. Rev. B 54 14111
[37] Jomard G, Petit T, Magaud L, Pasturel A 1999 Phys. Rev. B 60 15624
[38] Jomard G, Petit T, Magaud L, Pasturel A, Kresse G, Hafner J 2000 Mol. Simulat. 24 111
[39] Jomard G, Pasturel A 2001 Appl. Surf. Sci. 177 230
[40] Wang F H, Liu S Y, Shang J X, Zhou Y S, Li Z Y, Yang J L 2008 Surf. Sci. 602 2212
[41] Yao R, Wang F H, Zhou Y S 2009 Acta Phys. Sin. 58 177 (in Chinese) [姚蕊, 王福合, 周云松 2009 58 177]
[42] Glazoff M V, Tokuhiro A, Rashkeev S N, Sabharwall P 2014 J. Nucl. Mater. 444 65
[43] Chiang T W, Chernatynskiy A, Noordhoek M J, Sinnott S B, Phillpot S R 2015 Comp. Mater. Sci. 98 112
[44] Kresse G, Hafner J 1993 Phys. Rev. B 48 13115
[45] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[46] Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15
[47] Hohenberg P, Kohn W 1964 Phys. Rev. 136B 864
[48] Kohn W, Sham L J 1965 Phys. Rev. 140A 1133
[49] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
[50] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[51] Blchl P E 1994 Phys. Rev. B 50 17953
[52] Kittel C (translated by Xiang J Z, Wu X H) 2012 Introduction to Solid State Physics (Eighth Ed.) (Beijing: Chemical Industry Press) p15 (in Chinese) [基泰尔 C 著 (项金钟, 吴兴惠 译) 2012 固体物理导论 (第八版) (北京: 化学工业出版社) 第15页]
[53] Zhang C S, Flinn B J, Mitchell I V, Norton P R 1991 Surf. Sci. 245 373
[54] Zhang C S, Li B, Norton P R 1994 Surf. Sci. 313 308
[55] Kim H G, Kim T H, Jeong Y H 2002 J. Nucl. Mater. 306 44
[56] Bakradze G, Jeurgens L P H, Mittemeijer E J 2010 Surf. Interface Anal. 42 588
[57] Bakradze G, Jeurgens L P H, Mittemeijer E J 2011 J. Appl. Phys. 110 024904
[58] Hammer B, Norskov J K 2000 Adv. Catal. 45 71
-
[1] Liu J Z 2007 Structure Nuclear Materials (Beijing: Chemical Industry Press) pp19-22 (in Chinese) [刘建章 2007核结构材料(北京: 化学工业出版社) 第19-22页]
[2] Zhou B X, Li Q, Yao M Y, Xia S, Liu W Q, Zhu Y L 2007 Rare Met. Mater. Eng. 36 1129 (in Chinese) [周邦新, 李强, 姚美意, 夏爽, 刘文庆, 褚于良 2007 稀有金属材料与工程 36 1129]
[3] Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X 2011 Acta Metall. Sin. 47 163 (in Chinese) [李士炉, 姚美意, 张欣, 耿建桥, 彭剑超, 周邦新 2011 金属学报 47 163]
[4] Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H 2005 Atom Energ. Sci. Technol. (suppl.) 39 1 (in Chinese) [赵文金, 周邦新, 苗志, 彭倩, 蒋有荣, 蒋宏曼, 庞华 2005 原子能科学技术 (增刊) 39 1]
[5] Kruger R M, Adamson R B, Brenner S S 1992 J. Nucl. Mater. 189 193
[6] Zhou B X 1993 Chin. J. Nucl. Sci. Eng. 13 51 (in Chinese) [周邦新 1993 核科学与工程 13 51]
[7] Liu W Q, Geng X, Liu Q D, Li Q, Yao M Y, Zhou B X 2008 Rare Met. Mater. Eng. 37 509 (in Chinese) [刘文庆, 耿迅, 刘庆冬, 李强, 姚美意, 周邦新 2008 稀有金属材料与工程 37 509]
[8] Gong W J, Zhang H L, Wu C F, Tian H, Wang X T 2013 Corros. Sci. 77 391
[9] Huang J, Yao M Y, Gao C Y, Liang X, Peng J C, Zhang J L, Zhou B X 2015 Corros. Sci. 99 172
[10] Park J Y, Kim H G, Jeong Y H, Jung Y H 2004 J. Nucl. Mater. 335 433
[11] Qin W, Nam C, Li H L, Szpunar J A 2007 Acta Mater. 55 1695
[12] Tewari R, Srivastava D, Dey G K, Chakravarty J K, Banerjee S 2008 J. Nucl. Mater. 383 153
[13] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L 2009 Corros. Prot. 30 589 (in Chinese) [周邦新, 李强, 姚美意, 刘文庆, 褚于良 2009 腐蚀与防护 30 589]
[14] Garner A, Gholinia A, Frankel P, Gass M, MacLaren I, Preuss M 2014 Acta Mater. 80 159
[15] Gabory B D, Motta A T, Wang K 2015 J. Nucl. Mater. 456 272
[16] Yao M Y, Gao C Y, Huang J, Peng J C, Liang X, Zhang J L, Zhou B X, Li Q 2015 Corros. Sci. 100 169
[17] Nikulina A V, Markelov V A 1996 Proceedings of the 11th International Symposium on Zirconium in the Nuclear Industry Garmisch Partenkirchen, Germany, September 11-14, 1995 p785
[18] Jung Y I, Lee M H, Kim H G, Park J Y, Jeong Y H 2009 J. Alloys Compd. 479 423
[19] Yao M Y, Zhou B X, Li Q, Xia S, Liu W Q 2008 Shanghai Met. 30 1 (in Chinese) [姚美意, 周邦新, 李强, 夏爽, 刘文庆 2008 上海金属 30 1]
[20] Sabol G P 2005 Proceedings of the 14th International Symposium on Zirconium in the Nuclear Industry Stockholm, Sweden, June 13-17, 2004 p3
[21] Zhou B X, Zhao W J, Mao Z 1997 New Zirconium Alloy Research (Beijing: Chemical Industry Press) p183 (in Chinese) [周邦新, 赵文金, 苗志 1997 新锆合金的研究 (北京: 化学工业出版社) 第183页]
[22] Zhao W J 2004 Rare Met. Lett. 23 15 (in Chinese) [赵文金 2004 稀有金属快报 23 15]
[23] Park J Y, Choi B K, Yoo S J, Jeong Y H 2006 J. Nucl. Mater. 359 59
[24] Yao M Y, Li S L, Zhang X, Zhou B X 2011 Acta Metall. Sin. 47 865 (in Chinese) [姚美意, 李士炉, 张欣, 周邦新 2011 金属学报 47 865]
[25] Jeong Y H, Kim H G, Kim D J, Choi B K, Kim J H 2003 J. Nucl. Mater. 323 72
[26] Xie X F, Zhang J L, Zhu L, Yao M Y, Zhou B X, Peng J C 2012 Acta Metall. Sin. 48 1487 (in Chinese) [谢兴飞, 张金龙, 朱莉, 姚美意, 周邦新, 彭剑超 2012 金属学报 48 1487]
[27] Zhang J L, Xie X F, Yao M Y, Zhou B X, Peng J C, Li Q 2013 Chin. J. Nonferrous Met. 23 1542 (in Chinese) [张金龙, 谢兴飞, 姚美意, 周邦新, 彭剑超, 李强 2013 中国有色金属学报 23 1542]
[28] Zhang J L, Hu Y, Tu L M, Sun F T, Yao M Y, Zhou B X 2016 Corros. Sci. 102 161
[29] Sun J P, Zhou K L, Liang X D 2016 Acta Phys. Sin. 65 18201 (in Chinese) [孙建平, 周科良, 梁晓东 2016 65 018201]
[30] Ma D W, Wang Z, Cui H T, Zeng J, He C Z, Lu Z S 2016 Sens. Actuators B: Chem. 224 372
[31] Yan J, Xu W Y, Guo H, Gong Y, Mi Y M, Zhao X X 2015 Acta Phys. Sin. 64 016802 (in Chinese) [闫静, 徐位云郭辉, 龚毓, 宓一鸣, 赵新新 2015 64 016802]
[32] Luo H J, Cai J Q, Tao X M, Tan M Q 2015 Comput. Mater. Sci. 101 47
[33] Zeng W, Liu T M, Li T M, Xie B J 2015 Physica E: Low-dimensional Systems and Nanostructures 67 59
[34] Wang G J, Huang F, Chen X B, Gong C L, Liu H, Wen S, Cheng F, Zheng X, Zheng G W, Pan M 2015 Catal. Commun. 69 16
[35] Zhang P, Wang S X, Zhao J, He C H, Zhang P 2011 J. Nucl. Mater. 418 159
[36] Yamamoto M, Chan C T, Ho K M, Naito S 1996 Phys. Rev. B 54 14111
[37] Jomard G, Petit T, Magaud L, Pasturel A 1999 Phys. Rev. B 60 15624
[38] Jomard G, Petit T, Magaud L, Pasturel A, Kresse G, Hafner J 2000 Mol. Simulat. 24 111
[39] Jomard G, Pasturel A 2001 Appl. Surf. Sci. 177 230
[40] Wang F H, Liu S Y, Shang J X, Zhou Y S, Li Z Y, Yang J L 2008 Surf. Sci. 602 2212
[41] Yao R, Wang F H, Zhou Y S 2009 Acta Phys. Sin. 58 177 (in Chinese) [姚蕊, 王福合, 周云松 2009 58 177]
[42] Glazoff M V, Tokuhiro A, Rashkeev S N, Sabharwall P 2014 J. Nucl. Mater. 444 65
[43] Chiang T W, Chernatynskiy A, Noordhoek M J, Sinnott S B, Phillpot S R 2015 Comp. Mater. Sci. 98 112
[44] Kresse G, Hafner J 1993 Phys. Rev. B 48 13115
[45] Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169
[46] Kresse G, Furthmuller J 1996 Comp. Mater. Sci. 6 15
[47] Hohenberg P, Kohn W 1964 Phys. Rev. 136B 864
[48] Kohn W, Sham L J 1965 Phys. Rev. 140A 1133
[49] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
[50] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[51] Blchl P E 1994 Phys. Rev. B 50 17953
[52] Kittel C (translated by Xiang J Z, Wu X H) 2012 Introduction to Solid State Physics (Eighth Ed.) (Beijing: Chemical Industry Press) p15 (in Chinese) [基泰尔 C 著 (项金钟, 吴兴惠 译) 2012 固体物理导论 (第八版) (北京: 化学工业出版社) 第15页]
[53] Zhang C S, Flinn B J, Mitchell I V, Norton P R 1991 Surf. Sci. 245 373
[54] Zhang C S, Li B, Norton P R 1994 Surf. Sci. 313 308
[55] Kim H G, Kim T H, Jeong Y H 2002 J. Nucl. Mater. 306 44
[56] Bakradze G, Jeurgens L P H, Mittemeijer E J 2010 Surf. Interface Anal. 42 588
[57] Bakradze G, Jeurgens L P H, Mittemeijer E J 2011 J. Appl. Phys. 110 024904
[58] Hammer B, Norskov J K 2000 Adv. Catal. 45 71
计量
- 文章访问数: 7165
- PDF下载量: 223
- 被引次数: 0