-
建立了调制激光诱发硅太阳能电池的少数载流子密度波数学模型, 并利用光致载流子辐射检测掺杂浓度、阻抗及载流子输运参数. 对频域响应曲线中的双弯曲效应进行了研究, 构建了小交流信号作用的太阳能电池等效电路拓扑结构, 仿真分析了不同掺杂浓度、阻抗电阻和载流子传输参数对频响曲线拐点的影响. 通过光致载流子辐射频域扫描实验与多参数拟合检测了单晶硅太阳电池的施/受主浓度、并联电阻和载流子输运参数. 结果表明: 光致载流子辐射技术检测大面积太阳能电池频响曲线的双弯曲是由电容效应所引起的, 建立的数学模型可定量描述和预测检测结果, 并用于测量太阳能电池的掺杂浓度、电阻和载流子输运参数.An analytic mathematical model of modulated laser-induced minority carrier density wave of silicon solar cells is developed, and light-induced carrier recombination radiation luminescence method (photocarrier radiometry (PCR)) is employed to detect the doping concentration, impedance and carrier transport parameters. The double knee characteristics of frequency domain response curve are investigated, and in a small ac signal case, the equivalent circuit topology structure of a solar cell is constructed. Through simulation analysis based on minority carrier density wave mathematical model, the effects of doping concentration, resistance and carrier transport parameters on the PCR frequency domain response are investigated. Donor/acceptor concentration, shunt resistance and carrier transport parameters of Si solar cell are obtained by PCR frequency-scanning experiments and multi-parameter fitting. The results show that the first knee position of PCR-detected large-area solar-cell frequency domain response curve is determined by the capacitive effect. The simplified mathematical model can be used to quantitatively describe and determine the doping concentration, shunt resistance and carrier transport parameters of silicon solar cell.
-
Keywords:
- photocarrier radiometry /
- frequency scanning /
- p-n junction capacitor /
- parameter measurement
[1] Kasemann M, Grote D, Walter B, Kwapil W, Trupke T, Augarten Y, Warta W 2008 Prog. Photovoltaics 16 297
[2] Davis J R, Rohatgi A, Hopkins R H, Blais P D, Rai-Choudhury P, McCormick J R, Mollenkopf H C 1980 IEEE Trans. Electron Dev. 27 677
[3] Yi S G, Zhang W H, Ai B, Song J W, Shen H 2014 Chin. Phys. B 23 103
[4] Chen D S, Yang J, Xu F, Zhou P H, Du H W, Shi J W, Yu Z S, Zhang Y H, Ma Z Q 2013 Chin. Phys. B 22 018801
[5] Liang L, Xu Q F, Hu M L, Sun H, Xiang G H, Zhou L B 2013 Acta Phys. Sin. 62 037301 (in Chinese) [梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌 2013 62 037301]
[6] Mandelis A, Batista J, Shaughnessy D 2003 Phys. Rev. B 67 205208
[7] Li B C, Shaughnessy D, Mandelis A, Batista J, Garcia J 2004 J. Appl. Phys. 95 7832
[8] Li B C, Shaughnessy D, Mandelis A 2004 J. Appl. Phys. 97 023701
[9] Jenny N 2003 The Physics of Solar Cells (London: Imperial College Press) pp163-169
[10] Mandelis A 2001 Diffusion Wave Fields Mathematical Methods and Green Functions (New York: Springer) pp588-593
[11] Chawla B R, Gummel H K 1971 IEEE Trans. Electron Dev. 18 178
[12] Buh G H, Chung H J, Kim C K, Yi J H, Yoon I T, Kuk Y 2000 Appl. Phys. Lett. 77 106
-
[1] Kasemann M, Grote D, Walter B, Kwapil W, Trupke T, Augarten Y, Warta W 2008 Prog. Photovoltaics 16 297
[2] Davis J R, Rohatgi A, Hopkins R H, Blais P D, Rai-Choudhury P, McCormick J R, Mollenkopf H C 1980 IEEE Trans. Electron Dev. 27 677
[3] Yi S G, Zhang W H, Ai B, Song J W, Shen H 2014 Chin. Phys. B 23 103
[4] Chen D S, Yang J, Xu F, Zhou P H, Du H W, Shi J W, Yu Z S, Zhang Y H, Ma Z Q 2013 Chin. Phys. B 22 018801
[5] Liang L, Xu Q F, Hu M L, Sun H, Xiang G H, Zhou L B 2013 Acta Phys. Sin. 62 037301 (in Chinese) [梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌 2013 62 037301]
[6] Mandelis A, Batista J, Shaughnessy D 2003 Phys. Rev. B 67 205208
[7] Li B C, Shaughnessy D, Mandelis A, Batista J, Garcia J 2004 J. Appl. Phys. 95 7832
[8] Li B C, Shaughnessy D, Mandelis A 2004 J. Appl. Phys. 97 023701
[9] Jenny N 2003 The Physics of Solar Cells (London: Imperial College Press) pp163-169
[10] Mandelis A 2001 Diffusion Wave Fields Mathematical Methods and Green Functions (New York: Springer) pp588-593
[11] Chawla B R, Gummel H K 1971 IEEE Trans. Electron Dev. 18 178
[12] Buh G H, Chung H J, Kim C K, Yi J H, Yoon I T, Kuk Y 2000 Appl. Phys. Lett. 77 106
计量
- 文章访问数: 5767
- PDF下载量: 414
- 被引次数: 0