搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用非稳定子态容错实现密集旋转操作

吴向艳 徐艳玲 於亚飞 张智明

引用本文:
Citation:

利用非稳定子态容错实现密集旋转操作

吴向艳, 徐艳玲, 於亚飞, 张智明

Fault-tolerantly implementing dense rotation operations based on non-stabilizer states

Wu Xiang-Yan, Xu Yan-Ling, Yu Ya-Fei, Zhang Zhi-Ming
PDF
导出引用
  • Non-Clifford操作不能在量子纠错码上自然横向实现, 但可通过辅助量子态和在量子纠错码上能横向实现的Clifford操作来容错实现, 从而取得容错量子计算的通用性. 非平庸的单量子比特操作是Non-Clifford操作, 可以分解为绕z轴和绕x轴非平庸旋转操作的组合. 本文首先介绍了利用非稳定子态容错实现绕z轴和绕x轴旋转的操作, 进而设计线路利用魔幻态容错制备非稳定子态集, 最后讨论了运用制备的非稳定子态集模拟任意非平庸单量子比特操作的问题. 与之前工作相比, 制备非稳定子态的线路得到简化, 成功概率提高, 且在高精度模拟任意单量子比特操作时所消耗的非稳定子态数目减少了50%.
    Based on the quantum error-correction codes and concatenation, quantum logical gates can be implemented transversally, which is called the fault-tolerant quantum computation. Clifford gates can be directly and fault-tolerantly performed, but they cannot reach universal quantum computation. How to implement the non-Clifford gate fault-tolerantly is a vital technique in fault-tolerant universal quantum computation. Here the magic state is selected to help the implementing of the non-Clifford gate transversally. Based on the non-stabilizer state cos θi|0>+sinθi|1>, circuits which can execute 2θi rotation around X-axis and Z-axis fault-tolerantly are proposed. Then new non-stabilizer states in this form are developed and produced from the distilled magic state. By using these states, a number of non-Clifford gates can be performed transversally, which makes profound implication in fault-tolerant quantum computation. We calculate the number of the non-stabilizer states needed for simulating the desired rotation operations, which is less than that in previous protocols.
    • 基金项目: 国家自然科学基金(批准号:61378012,60978009)、高等学校博士学科点专项科研基金(批准号:20124407110009)、国家重点基础研究发展计划(批准号:2011CBA00200,2013CB921804)和国家教育部留学回国人员科研启动基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61378012, 60978009), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the National Basic Research Program of China (Grant Nos. 2011CBA00200, 2013CB921804) and Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.
    [1]

    Sun J, Lu S F, Liu F, Yang L P 2012 Chin. Phys. B 21 010306

    [2]

    Chen W, Xue Z Y, Wang Z D, Shen R 2014 Chin. Phys. B 23 030309

    [3]

    Li T, Bao W S, Lin W Q, Zhang H, Fu X Q 2014 Chin. Phys. Lett. 31 050301

    [4]

    Li H Y, Wu C W, Chen Y B, Lin Y G, Chen P X, Li C Z 2013 Chin. Phys. B 22 110305

    [5]

    Wang X X, Zhang J Q, Yu Y F, Zhang Z M 2011 Chin. Phys. B 20 110306

    [6]

    Bacon D, Kempe J, Lidar D A, Whaley K B 2000 Phys. Rev. Lett. 85 1758

    [7]

    Zhang Q, Zhang E Y, Tang C J 2002 Acta Phys. Sin. 51 1675 (in Chinese) [张权, 张尔扬, 唐朝京 2002 51 1675]

    [8]

    Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199

    [9]

    Gottesman D 1997 Ph. D. Dissertation (California: Caltech)

    [10]

    Li Z, Xing L J 2013 Acta Phys. Sin. 62 130306 (in Chinese) [李卓, 刑莉娟 2013 62 130306]

    [11]

    Xiao F Y, Chen H W 2010 Acta Phys. Sin. 60 080303 (in Chinese) [肖芳英, 陈汉武 2010 60 080303]

    [12]

    Nielsen M A , Chuang I L 2000 Quantum Computation and Quantum Information (Vol.1) (Cambridge, England: Cambridge University Press) p179

    [13]

    Eastin B 2013 Phys. Rev. A 87 032321

    [14]

    Landahl A J, Cesare C 2013 Preprint arXiv: 1302.3240

    [15]

    Jochym-O'connor T, Laflamme R 2014 Phys. Rev. Lett. 112 010505

    [16]

    Paetznick A, Reichardt B W 2013 Phys. Rev. Lett. 111 090505

    [17]

    Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316

    [18]

    Duclos-Cianci G, Svore K M 2013 Phys. Rev. A 88 042325

    [19]

    Howard M, Wallman J, Veitch V, Emerson J 2014 Nature 510 351

    [20]

    Jochym-O'connor T, Yu Y, Helou B, Laflamme R 2013 Quantum Inf. Comput. 13 361

    [21]

    Yu Y F, Zhang Z M 2013 Acta Sin. Quantum Opt. 19 330 (in Chinese) [於亚飞, 张智明 2013 量子光学学报 19 330]

    [22]

    Reichardt B W 2005 Quantum Inf. Process 4 251

    [23]

    Campbell E T, Anwar H, Browne D E 2012 Phys. Rev. X 2 041021

    [24]

    Bravyi S, Haah J 2012 Phys. Rev. A 86 052329

    [25]

    Anwar H, Campbell E T, Browne D E 2012 New J. Phys. 14 063006

    [26]

    Meier A M, Eastin B, Knill E 2013 Quantum Inf. Comput. 13 195

    [27]

    Reichardt B W 2009 Quantum Inf. Comput. 9 1030

    [28]

    Jones C 2013 Phys. Rev. A 87 042305

    [29]

    Campbell E T, Browne D E 2010 Phys. Rev. Lett. 104 030503

    [30]

    Jones N C, Van M R, Fowler A G, McMahon P L, Kim J, Ladd T D, Yamamoto Y 2012 Phys. Rev. X 2 031007

    [31]

    Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324

    [32]

    Sun J G, He Y G 2003 J. Software 14 334 (in Chinese) [孙吉贵, 何雨果 2003 软件学报 14 334]

    [33]

    Grover L K 1996 Proc. 28th ACM Symp. Theory of Comp. May 22-24, 1996, p212-219

    [34]

    Bocharov A, Svore K M 2012 Phys. Rev. Lett. 109 190501

  • [1]

    Sun J, Lu S F, Liu F, Yang L P 2012 Chin. Phys. B 21 010306

    [2]

    Chen W, Xue Z Y, Wang Z D, Shen R 2014 Chin. Phys. B 23 030309

    [3]

    Li T, Bao W S, Lin W Q, Zhang H, Fu X Q 2014 Chin. Phys. Lett. 31 050301

    [4]

    Li H Y, Wu C W, Chen Y B, Lin Y G, Chen P X, Li C Z 2013 Chin. Phys. B 22 110305

    [5]

    Wang X X, Zhang J Q, Yu Y F, Zhang Z M 2011 Chin. Phys. B 20 110306

    [6]

    Bacon D, Kempe J, Lidar D A, Whaley K B 2000 Phys. Rev. Lett. 85 1758

    [7]

    Zhang Q, Zhang E Y, Tang C J 2002 Acta Phys. Sin. 51 1675 (in Chinese) [张权, 张尔扬, 唐朝京 2002 51 1675]

    [8]

    Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199

    [9]

    Gottesman D 1997 Ph. D. Dissertation (California: Caltech)

    [10]

    Li Z, Xing L J 2013 Acta Phys. Sin. 62 130306 (in Chinese) [李卓, 刑莉娟 2013 62 130306]

    [11]

    Xiao F Y, Chen H W 2010 Acta Phys. Sin. 60 080303 (in Chinese) [肖芳英, 陈汉武 2010 60 080303]

    [12]

    Nielsen M A , Chuang I L 2000 Quantum Computation and Quantum Information (Vol.1) (Cambridge, England: Cambridge University Press) p179

    [13]

    Eastin B 2013 Phys. Rev. A 87 032321

    [14]

    Landahl A J, Cesare C 2013 Preprint arXiv: 1302.3240

    [15]

    Jochym-O'connor T, Laflamme R 2014 Phys. Rev. Lett. 112 010505

    [16]

    Paetznick A, Reichardt B W 2013 Phys. Rev. Lett. 111 090505

    [17]

    Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316

    [18]

    Duclos-Cianci G, Svore K M 2013 Phys. Rev. A 88 042325

    [19]

    Howard M, Wallman J, Veitch V, Emerson J 2014 Nature 510 351

    [20]

    Jochym-O'connor T, Yu Y, Helou B, Laflamme R 2013 Quantum Inf. Comput. 13 361

    [21]

    Yu Y F, Zhang Z M 2013 Acta Sin. Quantum Opt. 19 330 (in Chinese) [於亚飞, 张智明 2013 量子光学学报 19 330]

    [22]

    Reichardt B W 2005 Quantum Inf. Process 4 251

    [23]

    Campbell E T, Anwar H, Browne D E 2012 Phys. Rev. X 2 041021

    [24]

    Bravyi S, Haah J 2012 Phys. Rev. A 86 052329

    [25]

    Anwar H, Campbell E T, Browne D E 2012 New J. Phys. 14 063006

    [26]

    Meier A M, Eastin B, Knill E 2013 Quantum Inf. Comput. 13 195

    [27]

    Reichardt B W 2009 Quantum Inf. Comput. 9 1030

    [28]

    Jones C 2013 Phys. Rev. A 87 042305

    [29]

    Campbell E T, Browne D E 2010 Phys. Rev. Lett. 104 030503

    [30]

    Jones N C, Van M R, Fowler A G, McMahon P L, Kim J, Ladd T D, Yamamoto Y 2012 Phys. Rev. X 2 031007

    [31]

    Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324

    [32]

    Sun J G, He Y G 2003 J. Software 14 334 (in Chinese) [孙吉贵, 何雨果 2003 软件学报 14 334]

    [33]

    Grover L K 1996 Proc. 28th ACM Symp. Theory of Comp. May 22-24, 1996, p212-219

    [34]

    Bocharov A, Svore K M 2012 Phys. Rev. Lett. 109 190501

  • [1] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案.  , 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [2] 蒋世民, 贾欣燕, 樊代和. 非马尔科夫环境中Werner态的量子非局域关联检验研究.  , 2024, 73(16): 160301. doi: 10.7498/aps.73.20240450
    [3] 陈子杰, 潘啸轩, 华子越, 王韦婷, 马雨玮, 李明, 邹旭波, 孙麓岩, 邹长铃. 基于超导量子系统的量子纠错研究进展.  , 2022, 71(24): 240305. doi: 10.7498/aps.71.20221824
    [4] 王明宇, 王馨德, 阮东, 龙桂鲁. 量子直接传态.  , 2021, 70(19): 190301. doi: 10.7498/aps.70.20210837
    [5] 田宇玲, 冯田峰, 周晓祺. 基于冗余图态的多人协作量子计算.  , 2019, 68(11): 110302. doi: 10.7498/aps.68.20190142
    [6] 邓富国, 李熙涵, 李涛. 基于光量子态避错及容错传输的量子通信.  , 2018, 67(13): 130301. doi: 10.7498/aps.67.20180598
    [7] 孙伟, 尹华磊, 孙祥祥, 陈腾云. 基于相干叠加态的非正交编码诱骗态量子密钥分发.  , 2016, 65(8): 080301. doi: 10.7498/aps.65.080301
    [8] 任宝藏, 邓富国. 光子两自由度超并行量子计算与超纠缠态操控.  , 2015, 64(16): 160303. doi: 10.7498/aps.64.160303
    [9] 孙新梅, 查新未, 祁建霞, 兰倩. 基于非最大纠缠的五粒子Cluster态的高效量子态共享方案.  , 2013, 62(23): 230302. doi: 10.7498/aps.62.230302
    [10] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配.  , 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [11] 肖芳英, 陈汉武. 量子稳定子码的差错纠正与译码网络构建.  , 2011, 60(8): 080303. doi: 10.7498/aps.60.080303
    [12] 李尊懋, 熊庄, 代丽丽. 几何活性原子态的计算.  , 2010, 59(11): 7824-7829. doi: 10.7498/aps.59.7824
    [13] 张国锋, 邢钊. 基于非均匀外场的双量子比特自旋XYZ模型的swap门操作.  , 2010, 59(3): 1468-1472. doi: 10.7498/aps.59.1468
    [14] 陈立冰, 谭鹏, 董少光, 路洪. 利用二粒子部分纠缠态实现开靶目标的非局域量子可控非(CNOT)门的受控操作.  , 2009, 58(10): 6772-6778. doi: 10.7498/aps.58.6772
    [15] 马瑞琼, 李永放, 时 坚. 量子态的非相干光时域测量.  , 2008, 57(9): 5593-5599. doi: 10.7498/aps.57.5593
    [16] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态.  , 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [17] 曾贵华, 诸鸿文. 基于非正交态的量子密钥验证方案.  , 2002, 51(4): 727-730. doi: 10.7498/aps.51.727
    [18] 张权, 张尔扬, 唐朝京. 基于无消相干子空间的量子避错码设计.  , 2002, 51(8): 1675-1683. doi: 10.7498/aps.51.1675
    [19] 方细明, 朱熙文, 冯 芒, 高克林, 施 磊. 核磁共振量子计算中的赝纯态制备.  , 1999, 48(8): 1405-1411. doi: 10.7498/aps.48.1405
    [20] 谢仿卿, 黄明宝, 夏宇兴. ArCN三原子准分子的研究(Ⅰ)——电子态的量子化学计算.  , 1994, 43(3): 351-355. doi: 10.7498/aps.43.351
计量
  • 文章访问数:  5646
  • PDF下载量:  360
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-23
  • 修回日期:  2014-09-08
  • 刊出日期:  2014-11-05

/

返回文章
返回
Baidu
map