搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

续流二极管续流瞬态反向恢复电压尖峰机理研究

罗毅飞 肖飞 唐勇 汪波 刘宾礼

引用本文:
Citation:

续流二极管续流瞬态反向恢复电压尖峰机理研究

罗毅飞, 肖飞, 唐勇, 汪波, 刘宾礼

Investigation into the reverse recovery voltage peak mechanism of freewheeling diode at a switching transition

Luo Yi-Fei, Xiao Fei, Tang Yong, Wang Bo, Liu Bin-Li
PDF
导出引用
  • 电力电子变流装置中的开关续流元件功率二极管由续流到截止转换的反向恢复过程中会在负载上产生电压尖峰,且短时续流下电压尖峰会很大,极易造成器件过压失效. 为了有效指导电力电子装置的可靠性设计,基于半导体物理和功率二极管基本结构,深入论述了PIN结构续流二极管开关瞬态工作机理,利用存储电荷的分析方法推导出二极管续流瞬态下的反向恢复电压尖峰机理及其随续流时间的变化规律:电压尖峰在短时续流下较大,随续流瞬态时间的增大而减小. 以绝缘栅双极型晶体管和续流二极管组成的两电平半桥逆变单元为例进行实验,结果表明:二极管续流瞬态发生反向恢复的电压尖峰随续流瞬态时间的增大近似呈指数规律减小,待续流电流稳定后,电压尖峰趋于常数,并最终随着续流过程的结束而进一步减小直至恒定,验证了理论分析的正确性. 对完善续流二极管反向恢复机理以及提高电能变换装置的可靠性具有一定的理论意义和应用价值.
    The freewheeling diode in power electronic converters may generate a voltage peak on the load during the reverse recovery process, and the peak voltage becomes larger when the forward conduction time is smaller, which very likely induces the over-voltage failure of the power devices. To effectively guide the reliability design of power electronic devices, the switching transition mechanism of the PIN freewheeling diode is discussed thoroughly based on semiconductor physics and the essential structure of power diodes. The law of reverse recovery voltage peak variation with switching transition time is deduced by methods of stored charge analysis, which shows that the peak voltage is larger for shorter conduction time and decreases abruptly as the transient conduction time increases. Experiments are carried out using the two-level half-bridge inverter unit with insulated-gate bipolar transistors and PIN diodes. Results show that the reverse recovery voltage peak decreases with the increase of the transition time, following an exponential rule, and tends to be constant after the freewheeling current becomes stable and finally approaches a steady state as the steady forward conduction current vanishes, thus proving the correctness of the presented analysis. This paper shows the theoretical and application values in the optimization of the reverse recovery mechanism of power diodes and the reliability improvement of power converters.
    • 基金项目: 国家高技术研究发展计划(863计划)(批准号:2013AA05404),国家自然科学基金面上项目(批准号:51277178)和新世纪优秀人才支持计划项目(批准号:NECT-11-0871)资助的课题.
    • Funds: Project supported by the National High-tech Research and Development Program of China (Grant No. 2013AA05404), the National Natural Science Foundation of China (Grant No. 51277178), and the Program for New Century Excellent Talents in University, China (Grant No. NECT-11-0871).
    [1]

    Huang A Q, Temple V, Liu Y, Li Y 2003 Solid-State Electron 47 727

    [2]

    Rahimo M T, Shammas N Y A 2001 IEEE Trans. Ind. App. 37 661

    [3]
    [4]

    Wu R, Blaabjerg F, Wang H, Liserre M 2013 Microelectron. Reliab. 07 15

    [5]
    [6]

    Matthias S, Geissmann S, Bellini M, Kopta A 25th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Kanazawa, May 26-30, 2013 p335

    [7]
    [8]
    [9]

    Zuo Y H, Wang J G, Fan R Y 2012 Acta Phys. Sin. 61 215202 (in Chinese) [左应红, 王建国, 范如玉 2012 61 215202]

    [10]

    Masuoka F, Nakamura K, Nishii A, Terashima T 2012 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Bruges, June 3-7, 2012, p373

    [11]
    [12]

    Donlon J F, Motto E R, Honsberg M, Radke T 2011 IEEE Energy Conversion Congress and Exposition (ECCE) Phoenix, AZ, Sept. 17-22, 2011 p4144

    [13]
    [14]
    [15]

    Blewitt W M, Gurwicz D I 2008 Electron Lett. 44 1088

    [16]

    Huang J H, L H L, Zhang Y M, Zhang Y M, Tang X Y, Chen F P, Song Q W 2011 Chin. Phys. B 20 118401

    [17]
    [18]
    [19]

    Tokura N, Yamamoto T, Kato H, Nakagawa A 2012 Trans. on Ind. App. 132 1726

    [20]

    Baburske R, Heinze B, Lutz J, Niedernostheide F 2008 IEEE Trans. on Electron. Devices 55 2164

    [21]
    [22]
    [23]

    Liu H C, Su Z X 2014 Acta Phys. Sin. 63 010505 (in Chinese) [刘洪臣, 苏振霞 2014 63 010505]

    [24]
    [25]

    Bertoluzza F, Cova P, Delmonte N, Pampili P, Portesine M 2010 Microelectron. Reliab. 50 1720

    [26]

    Benda V, Gowar J, Grant D A 1999 Power Semiconductor Devices: Theory and Applications (England: John Wiley Sons Ltd Press) pp24-136

    [27]
    [28]

    Kbanna V K 2003 The Insulated Gate Bipolar Transistor IGBT: Theory and Design (New Jersey: IEEE Press) p177

    [29]
    [30]
    [31]

    Anderson B L, Anderson R L 2006 Fundamentals of Semiconductor Devices (U. S.: McGraw-Hill Press) p143

    [32]
    [33]

    Lutz J, Schlangenotto H, Scheuermann U, Doncker R D 2011 Semiconductor Power Devices: Physics, Characteristics, Reliability (New York: Springer) p189

    [34]

    Tang Y 2010 Ph. D. Dissertation (Wuhan: Naval University of Engineering) (in Chinese) [唐勇 2010 博士学位论文 (武汉: 海军工程大学)]

    [35]
  • [1]

    Huang A Q, Temple V, Liu Y, Li Y 2003 Solid-State Electron 47 727

    [2]

    Rahimo M T, Shammas N Y A 2001 IEEE Trans. Ind. App. 37 661

    [3]
    [4]

    Wu R, Blaabjerg F, Wang H, Liserre M 2013 Microelectron. Reliab. 07 15

    [5]
    [6]

    Matthias S, Geissmann S, Bellini M, Kopta A 25th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Kanazawa, May 26-30, 2013 p335

    [7]
    [8]
    [9]

    Zuo Y H, Wang J G, Fan R Y 2012 Acta Phys. Sin. 61 215202 (in Chinese) [左应红, 王建国, 范如玉 2012 61 215202]

    [10]

    Masuoka F, Nakamura K, Nishii A, Terashima T 2012 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Bruges, June 3-7, 2012, p373

    [11]
    [12]

    Donlon J F, Motto E R, Honsberg M, Radke T 2011 IEEE Energy Conversion Congress and Exposition (ECCE) Phoenix, AZ, Sept. 17-22, 2011 p4144

    [13]
    [14]
    [15]

    Blewitt W M, Gurwicz D I 2008 Electron Lett. 44 1088

    [16]

    Huang J H, L H L, Zhang Y M, Zhang Y M, Tang X Y, Chen F P, Song Q W 2011 Chin. Phys. B 20 118401

    [17]
    [18]
    [19]

    Tokura N, Yamamoto T, Kato H, Nakagawa A 2012 Trans. on Ind. App. 132 1726

    [20]

    Baburske R, Heinze B, Lutz J, Niedernostheide F 2008 IEEE Trans. on Electron. Devices 55 2164

    [21]
    [22]
    [23]

    Liu H C, Su Z X 2014 Acta Phys. Sin. 63 010505 (in Chinese) [刘洪臣, 苏振霞 2014 63 010505]

    [24]
    [25]

    Bertoluzza F, Cova P, Delmonte N, Pampili P, Portesine M 2010 Microelectron. Reliab. 50 1720

    [26]

    Benda V, Gowar J, Grant D A 1999 Power Semiconductor Devices: Theory and Applications (England: John Wiley Sons Ltd Press) pp24-136

    [27]
    [28]

    Kbanna V K 2003 The Insulated Gate Bipolar Transistor IGBT: Theory and Design (New Jersey: IEEE Press) p177

    [29]
    [30]
    [31]

    Anderson B L, Anderson R L 2006 Fundamentals of Semiconductor Devices (U. S.: McGraw-Hill Press) p143

    [32]
    [33]

    Lutz J, Schlangenotto H, Scheuermann U, Doncker R D 2011 Semiconductor Power Devices: Physics, Characteristics, Reliability (New York: Springer) p189

    [34]

    Tang Y 2010 Ph. D. Dissertation (Wuhan: Naval University of Engineering) (in Chinese) [唐勇 2010 博士学位论文 (武汉: 海军工程大学)]

    [35]
  • [1] 彭腾, 王辉耀, 赵茜, 刘俊宏, 汪波, 王晶晶, 周银琼, 张可怡, 杨俊, 熊祖洪. 电子注入层迁移率对Rubrene/C60基发光二极管半带隙开启电压的调控.  , 2024, 73(21): 217202. doi: 10.7498/aps.73.20240864
    [2] 赵茜, 陈敬, 彭腾, 刘俊宏, 汪波, 陈晓莉, 熊祖洪. 激基复合物有机发光二极管中系间窜越和反向系间窜越过程的非单调电流依赖关系.  , 2023, 72(16): 167201. doi: 10.7498/aps.72.20230765
    [3] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程.  , 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [4] 武鹏, 张涛, 张进成, 郝跃. 低反向漏电自支撑衬底AlGaN/GaN肖特基二极管.  , 2022, 71(15): 158503. doi: 10.7498/aps.71.20220161
    [5] 胡杨, 孙江, 张金海, 蔡丹, 杨海亮, 苏兆锋, 孙铁平, 孙剑锋, 赵博文. “强光一号”加速器短γ二极管径向箍缩率计算方法.  , 2021, 70(18): 185202. doi: 10.7498/aps.70.20210472
    [6] 李传纲, 鞠涛, 张立国, 李杨, 张璇, 秦娟, 张宝顺, 张泽洪. Ti, N共掺杂4H-SiC复合增强缓冲层生长及其对PiN二极管正向性能稳定性的改善.  , 2021, 70(3): 037102. doi: 10.7498/aps.70.20200921
    [7] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为.  , 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [8] 符民, 文尚胜, 夏云云, 向昌明, 马丙戌, 方方. GaN基通孔垂直结构的发光二极管失效分析.  , 2017, 66(4): 048501. doi: 10.7498/aps.66.048501
    [9] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算.  , 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [10] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响.  , 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [11] 张学智, 冯鸣, 张心正. 基于自相位调制效应的硅基中红外全光二极管.  , 2013, 62(2): 024201. doi: 10.7498/aps.62.024201
    [12] 焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪. 有机发光二极管的光致磁电导效应.  , 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [13] 张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪. 基于Alq3的有机发光二极管的磁电导效应.  , 2010, 59(8): 5817-5822. doi: 10.7498/aps.59.5817
    [14] 陈焕庭, 吕毅军, 陈忠, 张海兵, 高玉琳, 陈国龙. 基于电容和电导特性分析GaN蓝光发光二极管老化机理.  , 2009, 58(8): 5700-5704. doi: 10.7498/aps.58.5700
    [15] 马丽, 高勇. 半超结SiGe高压快速软恢复开关二极管.  , 2009, 58(1): 529-535. doi: 10.7498/aps.58.529
    [16] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究.  , 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [17] 马 丽, 高 勇, 刘 静, 王彩琳. 大功率低功耗快速软恢复SiGeC功率开关二极管.  , 2007, 56(12): 7236-7241. doi: 10.7498/aps.56.7236
    [18] 许雪梅, 彭景翠, 李宏建, 瞿述, 罗小华. 载流子迁移率对单层有机发光二极管复合效率的影响.  , 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
    [19] 蒋祺, 龚昌德. 无序层状系统的电导率.  , 1988, 37(6): 941-949. doi: 10.7498/aps.37.941
    [20] 赵冷柱. 量子化极限情况下MOS反型层二维电子气定域态电子电导率σxx的低频效应.  , 1987, 36(4): 411-418. doi: 10.7498/aps.36.411
计量
  • 文章访问数:  7942
  • PDF下载量:  1672
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-10
  • 修回日期:  2014-06-28
  • 刊出日期:  2014-11-05

/

返回文章
返回
Baidu
map