搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氙等离子体输运性质计算

陈艳秋

引用本文:
Citation:

氙等离子体输运性质计算

陈艳秋

Calculation of transport coefficients of a xenon plasma

Chen Yan-Qiu
PDF
导出引用
  • 采用基于将Chapman-Enskog方法扩展到高阶近似的方法计算获得了温度范围在300–40000 K,不同压力条件下氙等离子体的黏性、热导率和电导率. 热力学平衡条件下的计算结果与文献报道的实验和计算结果符合良好,验证了计算方法和结果的合理性与准确性. 在此基础上,计算获得了电子温度(Te)不等于重粒子温度(Th)的热力学非平衡和化学平衡条件下氙等离子体的输运性质,并分析了输运性质随压力和热力学非平衡程度变化的原因.
    The viscosities, thermal conductivities and electrical conductivities of xenon plasma are obtained using Chapman-Enskog method expanded up to a higher approximation in a computation range from 300 to 40000 K under different pressures. In the local thermodynamic equilibrium regime, the results are compared with published experimental and computational results, showing that they are in good agreement with each other, which validates the accuracy of the computational method. The transport properties of xenon plasma are further obtained under the chemical equilibrium and thermal nonequilibrium, in which the electron temperature Te is different from that of heavy species Th. The evolutions of the transport properties with pressure and thermal nonequilibrium parameters (θ=Te/Th) are presented and analyzed.
    • 基金项目: 国家自然科学基金(批准号:11275021,11072020)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11072020).
    [1]

    William T, Anderson J R 1951 J. Opt. Soc. Am. 41 385

    [2]

    Martinez A, Roberts G, Garzarella K, Lutz M, Caswell M 2013 Photodermatol. Photo. 29 78

    [3]

    Beattie J R, Matossian J N, Robson R 1990 J. Propul. Power 6 145

    [4]

    Linnell J A, Gallimore A D 2006 J. Propul. Power 22 1402

    [5]

    Helmick H H, Fuller J L, Schneider R T 1975 Appl. Phys. Lett. 26 327

    [6]

    Frolov V A, Mamaev V S, Bronin N S, Volkov P G 1994 Weld. Int. 8 41

    [7]

    Kaneoka I 1998 Science 280 851

    [8]

    Ault E R, Braford J R, Bhaumik M L 1975 Appl. Phys. Lett. 27 413

    [9]

    Wang L, Chen D Y, Xia Y Q, Fan R W, He W M 2012 Chin. Phys. B 21 014206

    [10]

    Zhang D H, Shi Y L, Jiang J, Dong C Z, Fumihiro K 2012 Chin. Phys. B 21 013402

    [11]

    Hirschfelder J O, Curtiss C F, Bird R B 1964 Molecular Theory of Gases and Liquids (New York: John Wiley and Sons, Inc)

    [12]

    Chapman S, Cowling T G 1970 The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge: Cambridge University Press)

    [13]

    Devoto R S 1966 Phys. Fluids 9 1230

    [14]

    Murphy A B 2000 Plasma Chem. Plasma Process. 20 279

    [15]

    Maitland G C, Smith E B 1972 J. Chem. Eng. Data. 17 150

    [16]

    Goldblatt M, Wageman W 1971 Phys. Fluids 14 1024

    [17]

    Clarke A, Smith E 1968 J. Chem. Phys. 48 3988

    [18]

    Dawe R, Smith E 1970 J. Chem. Phys. 52 693

    [19]

    Saxena V K, Saxena S C 1969 J. Chem. Phys. 51 3361

    [20]

    Kestin J, Knierim K, Mason E A, Najafi B 1984 J. Phys. Chem. Ref. Data 13 229

    [21]

    Devoto R S 1969 AIAA J. 7 199

    [22]

    Devoto R S 1967 Phys. Fluids 10 354

    [23]

    Devoto R S 1967 Phys. Fluids 10 2105

    [24]

    Devoto R S 1968 J. Plasma Phys. 2 617

    [25]

    Murphy A B 1997 IEEE Trans. Plasma Sci. 25 809

    [26]

    Wang H X, Sun S R, Chen S Q 2012 Acta Phys. Sin. 61 195203 (in Chinese) [王海兴, 孙素蓉, 陈士强 2012 61 195203]

    [27]

    Murphy A B, Arundell C J 1994 Plasma Chem. Plasma Process. 14 451

    [28]

    Moore C E 1949 Atomic Energy Levels National Bureau of Standards Circular No. 467. US Government Printing Office, Washington DC

    [29]

    Ralchenko Y, Kramida A, Reader J 2010 Team 2008 NIST Atomic Spectra Database (Version 3.1.5) National Institute of Standards and Technology, Gaithersburg, MD

    [30]

    Vicharelli P 1987 J. Appl. Phys. 62 2250

    [31]

    Bose T K 1988 Prog. Aerospace Sci. 25 1

    [32]

    Frost L S, Phelps A V 1964 Phys. Rev. 136 1538

    [33]

    Mason E A, Munn R J, Smith F J 1967 Phys. Fluids 10 1827

    [34]

    Devoto R S 1965 Ph. D. Dissertation (Ann Arbor, Michigan: Stanford University)

    [35]

    Wang H X, Chen S Q, Chen X 2012 J. Phys. D: Appl. Phys. 45 165202

    [36]

    Mason E A, Rice W E 1954 J. Chem. Phys. 22 843

  • [1]

    William T, Anderson J R 1951 J. Opt. Soc. Am. 41 385

    [2]

    Martinez A, Roberts G, Garzarella K, Lutz M, Caswell M 2013 Photodermatol. Photo. 29 78

    [3]

    Beattie J R, Matossian J N, Robson R 1990 J. Propul. Power 6 145

    [4]

    Linnell J A, Gallimore A D 2006 J. Propul. Power 22 1402

    [5]

    Helmick H H, Fuller J L, Schneider R T 1975 Appl. Phys. Lett. 26 327

    [6]

    Frolov V A, Mamaev V S, Bronin N S, Volkov P G 1994 Weld. Int. 8 41

    [7]

    Kaneoka I 1998 Science 280 851

    [8]

    Ault E R, Braford J R, Bhaumik M L 1975 Appl. Phys. Lett. 27 413

    [9]

    Wang L, Chen D Y, Xia Y Q, Fan R W, He W M 2012 Chin. Phys. B 21 014206

    [10]

    Zhang D H, Shi Y L, Jiang J, Dong C Z, Fumihiro K 2012 Chin. Phys. B 21 013402

    [11]

    Hirschfelder J O, Curtiss C F, Bird R B 1964 Molecular Theory of Gases and Liquids (New York: John Wiley and Sons, Inc)

    [12]

    Chapman S, Cowling T G 1970 The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge: Cambridge University Press)

    [13]

    Devoto R S 1966 Phys. Fluids 9 1230

    [14]

    Murphy A B 2000 Plasma Chem. Plasma Process. 20 279

    [15]

    Maitland G C, Smith E B 1972 J. Chem. Eng. Data. 17 150

    [16]

    Goldblatt M, Wageman W 1971 Phys. Fluids 14 1024

    [17]

    Clarke A, Smith E 1968 J. Chem. Phys. 48 3988

    [18]

    Dawe R, Smith E 1970 J. Chem. Phys. 52 693

    [19]

    Saxena V K, Saxena S C 1969 J. Chem. Phys. 51 3361

    [20]

    Kestin J, Knierim K, Mason E A, Najafi B 1984 J. Phys. Chem. Ref. Data 13 229

    [21]

    Devoto R S 1969 AIAA J. 7 199

    [22]

    Devoto R S 1967 Phys. Fluids 10 354

    [23]

    Devoto R S 1967 Phys. Fluids 10 2105

    [24]

    Devoto R S 1968 J. Plasma Phys. 2 617

    [25]

    Murphy A B 1997 IEEE Trans. Plasma Sci. 25 809

    [26]

    Wang H X, Sun S R, Chen S Q 2012 Acta Phys. Sin. 61 195203 (in Chinese) [王海兴, 孙素蓉, 陈士强 2012 61 195203]

    [27]

    Murphy A B, Arundell C J 1994 Plasma Chem. Plasma Process. 14 451

    [28]

    Moore C E 1949 Atomic Energy Levels National Bureau of Standards Circular No. 467. US Government Printing Office, Washington DC

    [29]

    Ralchenko Y, Kramida A, Reader J 2010 Team 2008 NIST Atomic Spectra Database (Version 3.1.5) National Institute of Standards and Technology, Gaithersburg, MD

    [30]

    Vicharelli P 1987 J. Appl. Phys. 62 2250

    [31]

    Bose T K 1988 Prog. Aerospace Sci. 25 1

    [32]

    Frost L S, Phelps A V 1964 Phys. Rev. 136 1538

    [33]

    Mason E A, Munn R J, Smith F J 1967 Phys. Fluids 10 1827

    [34]

    Devoto R S 1965 Ph. D. Dissertation (Ann Arbor, Michigan: Stanford University)

    [35]

    Wang H X, Chen S Q, Chen X 2012 J. Phys. D: Appl. Phys. 45 165202

    [36]

    Mason E A, Rice W E 1954 J. Chem. Phys. 22 843

  • [1] 张彩霞, 马向超, 张建奇. Au(111)薄膜表面等离激元和热载流子输运性质的理论研究.  , 2022, 71(22): 227801. doi: 10.7498/aps.71.20221166
    [2] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算.  , 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [3] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质.  , 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [4] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长.  , 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [5] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵.  , 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [6] 王鼎, 张振华, 邓小清, 范志强. BN链掺杂的石墨烯纳米带的电学及磁学特性.  , 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [7] 刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉. 栅极电势对强光场下石墨烯场效应管中电子隧穿的影响.  , 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [8] 张嵛, 刘连庆, 焦念东, 席宁, 王越超, 董再励. 锯齿型石墨烯带缺陷改性方法研究.  , 2012, 61(13): 137101. doi: 10.7498/aps.61.137101
    [9] 王海兴, 孙素蓉, 陈士强. 双温度氦等离子体输运性质计算.  , 2012, 61(19): 195203. doi: 10.7498/aps.61.195203
    [10] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响.  , 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [11] 陈俊, 史琳, 王楠, 毕胜山. 基于分子动力学模拟流体输运性质的稳定性分析.  , 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [12] 程莉, 汪丽莉, 蒲十周, 胡妮, 张悦, 刘雍, 魏伟, 熊锐, 石兢. 磁性和非磁性元素掺杂的自旋梯状化合物Sr14(Cu0.97M0.03)24O41(M=Zn, Ni, Co)的结构和电输运性质.  , 2010, 59(2): 1155-1162. doi: 10.7498/aps.59.1155
    [13] 王晓坡, 宋渤, 吴江涛, 刘志刚. 基于反转法的O2-CO2 输运性质预测.  , 2010, 59(10): 7158-7163. doi: 10.7498/aps.59.7158
    [14] 徐跟建, 谭伟石, 曹辉, 邓开明, 吴小山. 非化学计量配比La0.67Sr0.33-x□xMnO3的结构和输运性质的研究.  , 2009, 58(1): 378-383. doi: 10.7498/aps.58.378
    [15] 欧阳方平, 王晓军, 张华, 肖金, 陈灵娜, 徐慧. 扶手椅型石墨纳米带的双空位缺陷效应研究.  , 2009, 58(8): 5640-5644. doi: 10.7498/aps.58.5640
    [16] 欧阳方平, 徐慧, 林峰. 双空位缺陷石墨纳米带的电子结构和输运性质研究.  , 2009, 58(6): 4132-4136. doi: 10.7498/aps.58.4132
    [17] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究.  , 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [18] 欧阳方平, 王焕友, 李明君, 肖 金, 徐 慧. 单空位缺陷对石墨纳米带电子结构和输运性质的影响.  , 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [19] 曾 晖, 胡慧芳, 韦建卫, 谢 芳, 彭 平. 含有五边形—七边形缺陷的单壁纳米碳管的输运性质研究.  , 2006, 55(9): 4822-4827. doi: 10.7498/aps.55.4822
    [20] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响.  , 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
计量
  • 文章访问数:  6384
  • PDF下载量:  431
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-09
  • 修回日期:  2014-06-07
  • 刊出日期:  2014-10-05

/

返回文章
返回
Baidu
map