搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

来流边界层效应下斜坡诱导的斜爆轰波

刘彧 周进 林志勇

引用本文:
Citation:

来流边界层效应下斜坡诱导的斜爆轰波

刘彧, 周进, 林志勇

Ramp-induced oblique detonation wave with an incoming boudary layer effect

Liu Yu, Zhou Jin, Lin Zhi-Yong
PDF
导出引用
  • 以超声速预混气中的斜爆轰波为研究对象,对其在来流边界层效应下的特性进行了实验研究. 在马赫数为3的超声速预混风洞中,通过斜坡诱导产生了斜爆轰波. 当来流的当量比较低时,预混气中产生的是化学反应锋面与激波面非耦合的激波诱导燃烧现象. 此时边界层分离区中的化学反应放热将使分离区尺度显著增大,流场非定常性显著增强,激波位置剧烈振荡. 当来流的当量比较高时,预混气将产生斜爆轰波. 此时边界层分离区会影响到斜爆轰波起爆时的形态. 在小尺度分离区下,斜爆轰波起爆时呈突跃结构(有横波);在中等尺度分离区下,流场固有的非定常性使斜爆轰波呈间歇突跃结构;在大尺度分离区下,斜爆轰波起爆则呈完全的平滑结构(无横波).
    The behavior of reacting shock wave in supersonic premixed flow with the effect of incoming boundary layer is investigated experimentally. A supersonic premixed flow at a Mach number of 3 encounters a ramp, and an oblique detonation wave (ODW) is produced. Four ramp angles (θ) are designed from 36° to 45° (interval of 3 degree) and the equivalence ratio (Φ) can be varied. At a lower equivalence ratio, the ODW cannot be initiated and instead the shock-induced combustion (SIC) comes into being. It is discovered that the overall flow field presents more significant unsteadiness for SIC than for inert shock wave because the separation region is greatly enlarged for SIC due to heat release by chemical reactions in the separation region. As for the ODW, it is prone to propagating upstream after initiated for current experimental conditions. For 39° ramp, the separation region of boundary layer is relatively small, and the ODW presents an abrupt pattern for which a transverse wave exists. However, larger separation region for 42° ramp and its unsteadiness make the transverse wave intermittently appear. For 45° ramp, the even larger separation region makes the transverse wave thoroughly disappear and the ODW presents a smooth pattern.
    • 基金项目: 国家自然科学基金(批准号:91016028,91216121)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91016028, 91216121).
    [1]

    Han X, Zhou J, Lin Z Y, Liu Y 2013 Chin. Phys. Lett. 30 054701

    [2]

    Han X, Zhou J, Lin Z Y 2012 Chin. Phys. B 21 124702

    [3]

    Huang Y, Ji H, Lien F S, Tang H 2012 Chin. Phys. Lett. 29 114701

    [4]

    Shen H, Liu K X, Zhang D L 2011 Chin. Phys. Lett. 28 124705

    [5]

    Liu S J, Lin Z Y, Sun M B, Liu W D 2011 Chin. Phys. Lett. 28 094704

    [6]

    Yan C J, Fan W, Huang X Q, Zhang Q, Zheng L X 2002 Prog. Natural Sci. 12 1021 (in Chinese) [严传俊, 范玮, 黄希桥, 张群, 郑龙席 2002 自然科学进展 12 1021]

    [7]

    Zhou R, Wang J P 2013 Shock Waves 23 461

    [8]

    Pan Z, Fan B, Zhang X, Gui M, Dong G 2011 Combust. Flame 158 2220

    [9]

    Valorani M, Giacinto M D, Buongiorno C 2001 Acta Astronaut. 48 211

    [10]

    Herrmann D, Siebe Frank, Glhan A 2013 J. Propul. Power 29 839

    [11]

    Spaid F W, Frishett J L 1972 AIAA J. 10 915

    [12]

    Ganapathisubramani B, Clemens N T, Dolling D S 2007 J. Fluid Mech. 585 369

    [13]

    Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703 (in Chinese) [全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 63 084703]

    [14]

    Zhu Y Z, Yi S H, He L, Tian L F, Zhou Y W 2013 Chin. Phys. B 22 014702

    [15]

    Zhang Q H, Yi S H, Zhu Y Z, Chen Z, Wu Y 2013 Chin. Phys. Lett. 30 044701

    [16]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 2013 Chin. Phys. B 22 24704

    [17]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 184702]

    [18]

    Fay J 1959 Phys. Fluids 2 283

    [19]

    Dabora E K, Nicholls J A, Morrison R B 1965 Proc. Combust. Inst. 10 817

    [20]

    Murray S B 1984 Ph.D. Dissertation (Montreal: McGill University)

    [21]

    Sommers W P, Morrison R B 1962 Phys. Fluids 5 241

    [22]

    Murray S B, Lee J H 1986 Prog. Astronaut. Areonaut. 106 329

    [23]

    Li C, Kailasanath K, Oran E S 1993 31th Aerospace Sciences Meeting and Exhibit Reno, January 11-14, 1993

    [24]

    Choi J Y, Jeung I S, Yoon Y 1998 Proc. Combust. Inst. 2181

    [25]

    Lin Z Y, Li D P, Zhou J, Huang Y H 2007 J. Propulsion Technol. 28 616 (in Chinese) [林志勇, 李大鹏, 周进, 黄玉辉 2007 推进技术 28 616]

    [26]

    Fan J C 2002 Modern Flow Visualization (Beijing: National Defense Industry Press) pp47-55, 240-257 (in Chinese) [范洁川 2002 近代流动显示技术(北京: 国防工业出版社) 第47–55, 240-257页]

    [27]

    Babinsky H, Harvey J K 2011 Shock Wave-Boundary-Layer Interactions (New York: Cambridge University Press) pp373-389

    [28]

    Délery J 1992 La Recherché Aerospatiale 1992-1

    [29]

    Teng H H, Jiang Z L 2012 J. Fluid Mech. 713 659

  • [1]

    Han X, Zhou J, Lin Z Y, Liu Y 2013 Chin. Phys. Lett. 30 054701

    [2]

    Han X, Zhou J, Lin Z Y 2012 Chin. Phys. B 21 124702

    [3]

    Huang Y, Ji H, Lien F S, Tang H 2012 Chin. Phys. Lett. 29 114701

    [4]

    Shen H, Liu K X, Zhang D L 2011 Chin. Phys. Lett. 28 124705

    [5]

    Liu S J, Lin Z Y, Sun M B, Liu W D 2011 Chin. Phys. Lett. 28 094704

    [6]

    Yan C J, Fan W, Huang X Q, Zhang Q, Zheng L X 2002 Prog. Natural Sci. 12 1021 (in Chinese) [严传俊, 范玮, 黄希桥, 张群, 郑龙席 2002 自然科学进展 12 1021]

    [7]

    Zhou R, Wang J P 2013 Shock Waves 23 461

    [8]

    Pan Z, Fan B, Zhang X, Gui M, Dong G 2011 Combust. Flame 158 2220

    [9]

    Valorani M, Giacinto M D, Buongiorno C 2001 Acta Astronaut. 48 211

    [10]

    Herrmann D, Siebe Frank, Glhan A 2013 J. Propul. Power 29 839

    [11]

    Spaid F W, Frishett J L 1972 AIAA J. 10 915

    [12]

    Ganapathisubramani B, Clemens N T, Dolling D S 2007 J. Fluid Mech. 585 369

    [13]

    Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703 (in Chinese) [全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 63 084703]

    [14]

    Zhu Y Z, Yi S H, He L, Tian L F, Zhou Y W 2013 Chin. Phys. B 22 014702

    [15]

    Zhang Q H, Yi S H, Zhu Y Z, Chen Z, Wu Y 2013 Chin. Phys. Lett. 30 044701

    [16]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 2013 Chin. Phys. B 22 24704

    [17]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 184702]

    [18]

    Fay J 1959 Phys. Fluids 2 283

    [19]

    Dabora E K, Nicholls J A, Morrison R B 1965 Proc. Combust. Inst. 10 817

    [20]

    Murray S B 1984 Ph.D. Dissertation (Montreal: McGill University)

    [21]

    Sommers W P, Morrison R B 1962 Phys. Fluids 5 241

    [22]

    Murray S B, Lee J H 1986 Prog. Astronaut. Areonaut. 106 329

    [23]

    Li C, Kailasanath K, Oran E S 1993 31th Aerospace Sciences Meeting and Exhibit Reno, January 11-14, 1993

    [24]

    Choi J Y, Jeung I S, Yoon Y 1998 Proc. Combust. Inst. 2181

    [25]

    Lin Z Y, Li D P, Zhou J, Huang Y H 2007 J. Propulsion Technol. 28 616 (in Chinese) [林志勇, 李大鹏, 周进, 黄玉辉 2007 推进技术 28 616]

    [26]

    Fan J C 2002 Modern Flow Visualization (Beijing: National Defense Industry Press) pp47-55, 240-257 (in Chinese) [范洁川 2002 近代流动显示技术(北京: 国防工业出版社) 第47–55, 240-257页]

    [27]

    Babinsky H, Harvey J K 2011 Shock Wave-Boundary-Layer Interactions (New York: Cambridge University Press) pp373-389

    [28]

    Délery J 1992 La Recherché Aerospatiale 1992-1

    [29]

    Teng H H, Jiang Z L 2012 J. Fluid Mech. 713 659

  • [1] 李山, 姜楠, 杨绍琼. 正弦波沟槽对湍流边界层相干结构影响的TR-PIV实验研究.  , 2019, 68(7): 074702. doi: 10.7498/aps.68.20181875
    [2] 李诗尧, 于明. 固体炸药爆轰的一种考虑热学非平衡的反应流动模型.  , 2018, 67(21): 214704. doi: 10.7498/aps.67.20172501
    [3] 陆昌根, 沈露予. 前缘曲率对三维边界层内被激发出非定常横流模态的影响研究.  , 2018, 67(21): 214702. doi: 10.7498/aps.67.20181343
    [4] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性.  , 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [5] 蔡继兴, 郭明, 渠旭, 李贺, 金光勇. 激光诱导等离子体的气体动力学和燃烧波扩展速度研究.  , 2017, 66(9): 094202. doi: 10.7498/aps.66.094202
    [6] 陆昌根, 朱晓清, 沈露予. 三维边界层内诱导横流失稳模态的感受性机理.  , 2017, 66(20): 204702. doi: 10.7498/aps.66.204702
    [7] 王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云. 激波/边界层干扰对等离子体合成射流的响应特性.  , 2017, 66(8): 084705. doi: 10.7498/aps.66.084705
    [8] 吴里银, 王振国, 李清廉, 李春. 超声速气流中液体横向射流的非定常特性与振荡边界模型.  , 2016, 65(9): 094701. doi: 10.7498/aps.65.094701
    [9] 陈大伟, 王裴, 孙海权, 蔚喜军. 爆轰波对碰驱动平面锡飞层的动力学及动载行为特征研究.  , 2016, 65(2): 024701. doi: 10.7498/aps.65.024701
    [10] 刘军, 付峥, 冯其京, 王裴. 爆轰驱动金属飞层对碰凸起和微射流形成的数值模拟研究.  , 2015, 64(23): 234701. doi: 10.7498/aps.64.234701
    [11] 于明, 孙宇涛, 刘全. 爆轰波在炸药-金属界面上的折射分析.  , 2015, 64(11): 114702. doi: 10.7498/aps.64.114702
    [12] 尹纪富, 尤云祥, 李巍, 胡天群. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析.  , 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [13] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植. 激波与层流/湍流边界层相互作用实验研究.  , 2014, 63(8): 084703. doi: 10.7498/aps.63.084703
    [14] 陈林, 唐登斌, Chaoqun Liu. 转捩边界层中流向条纹的新特性.  , 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [15] 邓争志, 黄虎. 表面张力-重力短峰波作用的海底边界层速度二阶解.  , 2010, 59(2): 735-739. doi: 10.7498/aps.59.735
    [16] 赵鹤云, 阚家德, 柳清菊, 刘佐权. 几种铁基非晶合金激波诱导晶化中的若干奇异物理效应研究.  , 2005, 54(4): 1711-1718. doi: 10.7498/aps.54.1711
    [17] 李存标. 关于转捩边界层中流向涡的产生.  , 2001, 50(1): 182-184. doi: 10.7498/aps.50.182
    [18] 丁鄂江, 黄祖洽. Boltzmann方程的奇异扰动解法(Ⅲ)——边界层解.  , 1985, 34(2): 213-224. doi: 10.7498/aps.34.213
    [19] 江体乾. 关于非牛顿型流体边界层的研究.  , 1962, 18(4): 224-226. doi: 10.7498/aps.18.224
    [20] 林鸿荪. 片流边界层中气流及热转移.  , 1954, 10(1): 71-88. doi: 10.7498/aps.10.71
计量
  • 文章访问数:  6909
  • PDF下载量:  859
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-01
  • 修回日期:  2014-06-19
  • 刊出日期:  2014-10-05

/

返回文章
返回
Baidu
map