搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

D2+强场解离的电子局域化随激光波长的非线性变化

季玲玲 童明强 王玉华

引用本文:
Citation:

D2+强场解离的电子局域化随激光波长的非线性变化

季玲玲, 童明强, 王玉华

Non linear wavelength dependence of electron localization in strong-field dissociation of D2+

Ji Ling-Ling, Tong Ming-Qiang, Wang Yu-Hua
PDF
导出引用
  • 研究了周期量级激光脉冲的波长变化对氘分子离子D2+强场解离过程中电子局域化的影响. 通过求解波恩-奥本海默近似下关于核波包演化的双能级含时薛定谔方程,发现电子局域化的不对称性对激光波长有反常的依赖关系. 电子局域程度随着波长的增加呈现增强的趋势,但在某些波长范围内电子局域化出现了显著的衰减. 导致电子局域化程度被削弱的直接原因是在某些波长下不同振动态的电子局域化对脉冲载波包络相位的响应出现了反相抵消. 分析表明,当波长发生变化时,决定电子局域化的核运动和电子运动在外场作用下出现不一致的运动响应,最终导致了电子局域化的非线性变化.
    The wavelength dependence of the electron localization in dissociating molecular ion D2+ is investigated via solving the time-dependent Schrödinger equation of the two-state model of the molecular ion. Our results reveal an anomalous dependence of the electron localization on the laser wavelength. Overall, the degree of the electron localization shows a growing trend with the increase of wavelength, but it drops off obviously at some wavelengths. It is found that the localization asymmetries for some vibrational states become opposite in phase when the wavelength is changed, leading to the decline of the electron localization. Further analysis shows that the nuclear and electronic motions that determine the electron localization respond inconsistently to the variation of the wavelength, ultimately resulting in the non-linear dependence of the electron localization on the laser wavelength.
    • 基金项目: 国家自然科学基金(批准号:10904120)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10904120).
    [1]

    Zewail A H 2000 J. Phys. Chem. A 104 5660

    [2]

    Posthumus J H 2004 Rep. Prog. Phys. 67 623

    [3]

    Bandrauk A D, Chelkowski S, Nguyen H S 2004 Int. J. Quant. Chem. 100 834

    [4]

    Liu K L, Zhang Q B, Lan P F, Lu P X 2013 Opt. Express 21 5107

    [5]

    Lan P F, Lu P X, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 011402

    [6]

    Corkum P B, Krausz F 2007 Nature Phys. 3 381

    [7]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [8]

    Lan P F, Lu P X, Cao W, Wang X L, Hong W Y 2007 Opt. Lett. 32 1186

    [9]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [10]

    Cao W, Lu P, Lan P, Wang X, Yang G 2006 Phys. Rev. A 74 063821

    [11]

    Hong W Y, Lu P F, Cao W, Lan P, Wang X 2007 J. Phys. B 40 2321

    [12]

    Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658

    [13]

    Zhou Y M, Huang C, Liao Q, Lu P 2012 Phys. Rev. Lett. 109 053004

    [14]

    Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2007 Nature 427 817

    [15]

    Cao W, Lu P, Lan P, Wang X, Li Y 2007 Phys. Rev. A 75 063423

    [16]

    Lan P F, Lu P X, Li F, Li Y, Yang Z 2008 Opt. Express 16 5868

    [17]

    Zeng Z N, Li R X, Xie X H, Xu Z Z 2004 Acta Phys. Sin. 53 2316(in Chinese)[曾志男, 李儒新, 谢新华, 徐志展 2004 53 2316]

    [18]

    Zhang Q B, Hong W Y, Lan P F, Yang Z Y, Lu P X 2008 Acta Phys. Sin. 57 7848(in Chinese)[张庆斌, 洪伟毅, 兰鹏飞, 杨振宇, 陆培祥 2008 57 7848]

    [19]

    Wang S Y, Hong W Y, Zhang Q B, Li Q G, Lu P X 2010 Chin. Phys. B 19 083203

    [20]

    Luo L Y, Du H C, Hu B T 2012 Chin. Phys. B 21 033202

    [21]

    Cavalieri A L, Mller N, Uphues T, Yakovlev V S, Baltuška A, Horvath B, Schmidt B, Blmel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U 2007 Nature 449 1029

    [22]

    Zhu X S, Zhang Q B, Hong W Y, Lu P X, Xu Z Z 2011 Opt. Express 19 24198

    [23]

    Wang J, Liu F, Yue D G, Zhao J, Xu Y, Meng Q T, Liu W K 2012 Chin. Phys. B 21 123301

    [24]

    Yue D G, Zheng X Y, Liu H, Wang C X, Meng Q T 2009 Chin. Phys. B 18 1479

    [25]

    Liu K L, Zhang Q B, Lu P X 2012 Phys. Rev. A 86 033410

    [26]

    Madsen C B, Anis F, Madsen L B, Esry B D 2012 Phys. Rev. Lett. 109 163003

    [27]

    Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J 2006 Science 312 246

    [28]

    He F, Ruiz C, Becker A 2007 Phys. Rev. Lett. 99 083002

    [29]

    Kremer M, Fischer B, Feuerstein B, de Jesus V L B, Sharma V, Hofrichter C, Rudenko A, Thumm U, SchrŚter C D, Moshammer R, Ullrich J 2009 Phys. Rev. Lett. 103 213003

    [30]

    Kling N G, Betsch K J, Zohrabi M, Zeng S, Anis F, Ablikim U, Jochim B, Wang Z, Kbel M, Kling M F, Carnes K D, Esry B D, Ben-Itzhak I 2013 Phys. Rev. Lett. 111 163004

    [31]

    Liu K L, Hong W Y, Lu P F 2011 Opt. Express 19 20279

    [32]

    Znakovskaya I, von den Hoff P, Zherebtsov S, Wirth A, Herrwerth O, Vrakking M, de Vivie-Riedle R, Kling M 2009 Phys. Rev. Lett. 103 103002

    [33]

    Lan P F, Lu P X, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 021801

    [34]

    Takemoto N, Becker A 2010 Phys. Rev. Lett. 105 203004

    [35]

    Zhang Q B, Lu P X, Lan P F, Hong W Y, Yang Z 2008 Opt. Express 16 9795

    [36]

    Hong W Y, Lu P X, Lan P F, Zhang Q B, Wang X L 2009 Opt. Express 17 5139

    [37]

    Hong W Y, Lu P X, Lan P F, Yang Z, Li Y H, Liao Q 2008 Phys. Rev. A 77 033410

    [38]

    Magrakvelidze M, He F, Niederhausen T, Litvinyuk I V, Thumm U 2009 Phys. Rev. A 79 033410

    [39]

    Silva F, Austin D R, Thai A, Baudisch M, Hemmer M, Faccio D, Couairon A, Biegert J 2012 Nature Comm. 3 807

    [40]

    Hong Z F, Zhang Q B, Lu P X 2013 Opt. Express 21 9491

    [41]

    Lan P F, Lu P X, Li Q, Li F, Hong W Y, Zhang Q 2009 Phys. Rev. A 79 043413

    [42]

    Tate J, Auguste T, Muller H G, Salières P, Agostini P, DiMauro L F 2007 Phys. Rev. Lett. 98 013901

    [43]

    Hong W Y, Lu P F, Li Q, Zhang Q B 2009 Opt. Lett. 34 2102

    [44]

    Liu K L, Hong W Y, Zhang Q B, Lu P X 2011 Opt. Express 19 26359

    [45]

    Znakovskaya I, von den Hoff P, Marcus G, Zherebtsov S, Bergues B, Gu X, Deng Y, Vrakking M J J, Kienberger R, Krausz F, de Vivie-Riedle R, Kling M F 2012 Phys. Rev. Lett. 108 063002

    [46]

    Liao Q, Zhou Y M, Huang C, Lu P X 2012 New J. Phys. 14 013001

    [47]

    Kelkensberg F, Sansone G, Ivanov M Y, Vrakking M 2011 Phys. Chem. Chem. Phys. 13 8647

    [48]

    Jia Z M, Zeng Z N, Li R X, Xu Z Z, Deng Y P 2014 Phys. Rev. A 89 023419

    [49]

    Xu T Y, He F 2013 Phys. Rev. A 88 043426

  • [1]

    Zewail A H 2000 J. Phys. Chem. A 104 5660

    [2]

    Posthumus J H 2004 Rep. Prog. Phys. 67 623

    [3]

    Bandrauk A D, Chelkowski S, Nguyen H S 2004 Int. J. Quant. Chem. 100 834

    [4]

    Liu K L, Zhang Q B, Lan P F, Lu P X 2013 Opt. Express 21 5107

    [5]

    Lan P F, Lu P X, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 011402

    [6]

    Corkum P B, Krausz F 2007 Nature Phys. 3 381

    [7]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [8]

    Lan P F, Lu P X, Cao W, Wang X L, Hong W Y 2007 Opt. Lett. 32 1186

    [9]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614

    [10]

    Cao W, Lu P, Lan P, Wang X, Yang G 2006 Phys. Rev. A 74 063821

    [11]

    Hong W Y, Lu P F, Cao W, Lan P, Wang X 2007 J. Phys. B 40 2321

    [12]

    Weber T, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M, Dörner R 2000 Nature 405 658

    [13]

    Zhou Y M, Huang C, Liao Q, Lu P 2012 Phys. Rev. Lett. 109 053004

    [14]

    Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2007 Nature 427 817

    [15]

    Cao W, Lu P, Lan P, Wang X, Li Y 2007 Phys. Rev. A 75 063423

    [16]

    Lan P F, Lu P X, Li F, Li Y, Yang Z 2008 Opt. Express 16 5868

    [17]

    Zeng Z N, Li R X, Xie X H, Xu Z Z 2004 Acta Phys. Sin. 53 2316(in Chinese)[曾志男, 李儒新, 谢新华, 徐志展 2004 53 2316]

    [18]

    Zhang Q B, Hong W Y, Lan P F, Yang Z Y, Lu P X 2008 Acta Phys. Sin. 57 7848(in Chinese)[张庆斌, 洪伟毅, 兰鹏飞, 杨振宇, 陆培祥 2008 57 7848]

    [19]

    Wang S Y, Hong W Y, Zhang Q B, Li Q G, Lu P X 2010 Chin. Phys. B 19 083203

    [20]

    Luo L Y, Du H C, Hu B T 2012 Chin. Phys. B 21 033202

    [21]

    Cavalieri A L, Mller N, Uphues T, Yakovlev V S, Baltuška A, Horvath B, Schmidt B, Blmel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U 2007 Nature 449 1029

    [22]

    Zhu X S, Zhang Q B, Hong W Y, Lu P X, Xu Z Z 2011 Opt. Express 19 24198

    [23]

    Wang J, Liu F, Yue D G, Zhao J, Xu Y, Meng Q T, Liu W K 2012 Chin. Phys. B 21 123301

    [24]

    Yue D G, Zheng X Y, Liu H, Wang C X, Meng Q T 2009 Chin. Phys. B 18 1479

    [25]

    Liu K L, Zhang Q B, Lu P X 2012 Phys. Rev. A 86 033410

    [26]

    Madsen C B, Anis F, Madsen L B, Esry B D 2012 Phys. Rev. Lett. 109 163003

    [27]

    Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J 2006 Science 312 246

    [28]

    He F, Ruiz C, Becker A 2007 Phys. Rev. Lett. 99 083002

    [29]

    Kremer M, Fischer B, Feuerstein B, de Jesus V L B, Sharma V, Hofrichter C, Rudenko A, Thumm U, SchrŚter C D, Moshammer R, Ullrich J 2009 Phys. Rev. Lett. 103 213003

    [30]

    Kling N G, Betsch K J, Zohrabi M, Zeng S, Anis F, Ablikim U, Jochim B, Wang Z, Kbel M, Kling M F, Carnes K D, Esry B D, Ben-Itzhak I 2013 Phys. Rev. Lett. 111 163004

    [31]

    Liu K L, Hong W Y, Lu P F 2011 Opt. Express 19 20279

    [32]

    Znakovskaya I, von den Hoff P, Zherebtsov S, Wirth A, Herrwerth O, Vrakking M, de Vivie-Riedle R, Kling M 2009 Phys. Rev. Lett. 103 103002

    [33]

    Lan P F, Lu P X, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 021801

    [34]

    Takemoto N, Becker A 2010 Phys. Rev. Lett. 105 203004

    [35]

    Zhang Q B, Lu P X, Lan P F, Hong W Y, Yang Z 2008 Opt. Express 16 9795

    [36]

    Hong W Y, Lu P X, Lan P F, Zhang Q B, Wang X L 2009 Opt. Express 17 5139

    [37]

    Hong W Y, Lu P X, Lan P F, Yang Z, Li Y H, Liao Q 2008 Phys. Rev. A 77 033410

    [38]

    Magrakvelidze M, He F, Niederhausen T, Litvinyuk I V, Thumm U 2009 Phys. Rev. A 79 033410

    [39]

    Silva F, Austin D R, Thai A, Baudisch M, Hemmer M, Faccio D, Couairon A, Biegert J 2012 Nature Comm. 3 807

    [40]

    Hong Z F, Zhang Q B, Lu P X 2013 Opt. Express 21 9491

    [41]

    Lan P F, Lu P X, Li Q, Li F, Hong W Y, Zhang Q 2009 Phys. Rev. A 79 043413

    [42]

    Tate J, Auguste T, Muller H G, Salières P, Agostini P, DiMauro L F 2007 Phys. Rev. Lett. 98 013901

    [43]

    Hong W Y, Lu P F, Li Q, Zhang Q B 2009 Opt. Lett. 34 2102

    [44]

    Liu K L, Hong W Y, Zhang Q B, Lu P X 2011 Opt. Express 19 26359

    [45]

    Znakovskaya I, von den Hoff P, Marcus G, Zherebtsov S, Bergues B, Gu X, Deng Y, Vrakking M J J, Kienberger R, Krausz F, de Vivie-Riedle R, Kling M F 2012 Phys. Rev. Lett. 108 063002

    [46]

    Liao Q, Zhou Y M, Huang C, Lu P X 2012 New J. Phys. 14 013001

    [47]

    Kelkensberg F, Sansone G, Ivanov M Y, Vrakking M 2011 Phys. Chem. Chem. Phys. 13 8647

    [48]

    Jia Z M, Zeng Z N, Li R X, Xu Z Z, Deng Y P 2014 Phys. Rev. A 89 023419

    [49]

    Xu T Y, He F 2013 Phys. Rev. A 88 043426

  • [1] 张颖, 王兴, 徐忠锋, 任洁茹, 张艳宁, 周贤明, 梁昌慧, 张小安. 从头算分子动力学研究硫脲嘧啶及其互变异构体在低能电子作用下的解离过程.  , 2024, 73(2): 023101. doi: 10.7498/aps.73.20231304
    [2] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究.  , 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [3] 吴永刚, 刘家兴, 刘红玲, 徐梅, 令狐荣锋. 三氯一氟甲烷分子在辐射场中的光谱性质与解离特性研究.  , 2019, 68(6): 063102. doi: 10.7498/aps.68.20182121
    [4] 付宝勤, 侯氢, 汪俊, 丘明杰, 崔节超. 钨空位捕获氢及其解离过程的分子动力学.  , 2019, 68(24): 240201. doi: 10.7498/aps.68.20190701
    [5] 姚洪斌, 蒋相站, 曹长虹, 李文亮. HD+分子的强场光解离动力学及其量子调控的理论研究.  , 2019, 68(17): 178201. doi: 10.7498/aps.68.20190400
    [6] 汪小丽, 姚关心, 杨新艳, 秦正波, 郑贤锋, 崔执凤. 甲胺分子的紫外光解离动力学实验研究.  , 2018, 67(24): 243301. doi: 10.7498/aps.67.20181731
    [7] 秦朝朝, 黄燕, 彭玉峰. Br2分子在360610 nm的光解离动力学研究.  , 2017, 66(19): 193301. doi: 10.7498/aps.66.193301
    [8] 吴红琳, 宋云飞, 王阳, 于国洋, 杨延强. 凝聚相材料分子解离动力学的飞秒瞬态光栅光谱研究.  , 2017, 66(3): 033301. doi: 10.7498/aps.66.033301
    [9] 刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp. 氟利昂F1110分子在飞秒激光脉冲作用下的多光子解离动力学.  , 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [10] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学.  , 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [11] 刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰. 氟利昂F114B2分子在飞秒紫外辐射下的解离动力学.  , 2016, 65(19): 193301. doi: 10.7498/aps.65.193301
    [12] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新. 双色场控制与测量原子分子超快电子动力学过程的研究进展.  , 2016, 65(22): 223206. doi: 10.7498/aps.65.223206
    [13] 沈壮志. 声驻波场中空化泡的动力学特性.  , 2015, 64(12): 124702. doi: 10.7498/aps.64.124702
    [14] 何曼丽, 王晓, 高思峰. 电子与氢及其同位素分子碰撞的非解离性电离截面研究.  , 2012, 61(4): 043404. doi: 10.7498/aps.61.043404
    [15] 许慎跃, 马新文, 任雪光, T. Pflüger, A. Dorn, J. Ullrich. 甲烷分子电子碰撞电离和解离的实验研究.  , 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [16] 唐小锋, 牛铭理, 周晓国, 刘世林. 基于阈值光电子-光离子符合技术的分子离子光谱和解离动力学研究.  , 2010, 59(10): 6940-6947. doi: 10.7498/aps.59.6940
    [17] 匙玉华, 刘学深, 丁培柱. 啁啾激光场中HF分子的经典解离.  , 2006, 55(12): 6320-6325. doi: 10.7498/aps.55.6320
    [18] 徐海峰, 刘世林, 马兴孝, 戴东旭, 解金春, 沙国河. 紫外波段CH2I2分子的光解离动力学研究.  , 2002, 51(2): 240-246. doi: 10.7498/aps.51.240
    [19] 孔 青, 朱立俊, 王加祥, 霍裕昆. 电子在超强激光场中的动力学特性.  , 1999, 48(4): 650-660. doi: 10.7498/aps.48.650
    [20] 丁世良, 马杰, 关大任. 双原子分子在强红外激光场中的多光子解离理论.  , 1996, 45(10): 1629-1635. doi: 10.7498/aps.45.1629
计量
  • 文章访问数:  5134
  • PDF下载量:  371
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-05
  • 修回日期:  2014-05-07
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map