-
光伏电池组件非线性输出特性的物理建模及其优化参数的准确提取是光伏发电系统设计计算、性能评估及优化控制的重要前提. 相对于传统的隐式单二极管模型,该文在光伏电池显式单二极管模型的基础上利用Lambert W函数推导了光伏组件的显式单二极管模型,提出一种基于重启边界约束Nelder-Mead单纯形算法的参数提取方法rbcNM,并利用两种典型光伏电池组件的实测数据对隐式、显式单二极管模型的准确性进行了对比测试和验证. 结果表明:rbcNM算法可以快速准确的提取隐式、显式单二极管模型的优化参数,计算结果与实测数据具有很好的一致性,相对于已有文献在准确度上取得了大幅度的提升;显式单二极管模型的准确性显著高于隐式单二极管模型,对光伏电池组件的电流-电压和功率-电压特性曲线具有更高的拟合精度.
-
关键词:
- 光伏电池组件 /
- 单二极管模型 /
- 参数提取 /
- Nelder-Mead单纯形算法
Accurate physical modeling and parameter extraction for the nonlinear current-voltage (Ⅰ-Ⅴ) characteristics of photovoltaic (PV) cells and modules are essential prerequisites for the design calculation, performance analysis, and optimal control of PV generation systems. In contrast to the traditional implicit single-diode models, this paper first derives the explicit single-diode models of PV cells and modules using the Lambert Wfunction, and then proposes a simple and efficient parameter extraction method on the basis of restarting the bound constrained Nelder-Mead simplex method (rbcNM). For comparing and analyzing the accuracy of implicit and explicit single-diode models, experimental data of the two typical PV cells and modules are tested and verified. Simulation results indicate that the proposed rbcNM method can rapidly and accurately extract the optimal parameters of implicit and explicit single-diode models, the simulation data produced by the extracted parameters of rbcNM method are in very good agreement with the experimental data in all cases. Comparison results show that the accuracy of rbcNM method is quite promising and outperforms the existing methods reported in the literature. Furthermore, the accuracy of explicit single-diode models is significantly higher than that of implicit single-diode models, and thus fit the Ⅰ-Ⅴ characteristic curves better.-
Keywords:
- photovoltaic module /
- single-diode model /
- parameter extraction /
- Nelder-Mead simplex method
[1] Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C 1986 Int. J. Sol. Energy 4 1
[2] [3] [4] Zhang Z Z, Cheng X F 2014 Acta Phys. Sin. 63 118801 (in Chinese)[张忠政, 程晓舫 2014 63 118801]
[5] [6] Yi S G, Zhang W H, Ai B, Song J W, Shen H 2014 Chin. Phys. B 23 028801
[7] [8] Villalva M G, Gazoli J R, Filho E R 2009 IEEE Trans. Power Electron. 24 1198
[9] Gao X K, Yao C A, Gao X C, Yu Y C 2014 Trans. CSAE 6 97 (in Chinese)[高献坤, 姚传安, 高向川, 余泳昌 2014 农业工程学报 6 97]
[10] [11] Phang J C H, Chan D S H, Phillips J R 1984 Electron. Lett. 20 406
[12] [13] [14] Ishibashi K, Kimura Y, Niwano M 2008 J. Appl. Phys. 103 0945071
[15] [16] Cotfas D T, Cotfas P A, Kaplanis S 2013 Renew. Sust. Energ. Rev. 28 588
[17] [18] Zagrouba M, Sellami A, Bouacha M, Ksouri M 2010 Sol. Energy 84 860
[19] AlRashidi M R, AlHajri M F, EI-Naggar K M, AI-Othman A K 2011 Sol. Energy 85 1543
[20] [21] [22] EI-Naggar K M, AlRashidi M R, AlHajri M F, AI-Othman A K 2012 Sol. Energy 86 266
[23] AlHajri M F, EI-Naggar K M, AlRashidi M R, Al-Othman A K 2012 Renew. Energy 44 238
[24] [25] [26] Huang W, Jiang C, Xue L Y, Song D Y 2011 Proceedings of the 2011 International Conference on Electric Information and Control Engineering Wuhan, China, April 15-17, 2011 p398
[27] [28] Askarzadeh A, Rezazadeh A 2012 Sol. Energy 86 3241
[29] Askarzadeh A, Rezazadeh A 2013 Appl. Energy 102 943
[30] [31] [32] Askarzadeh A, Rezazadeh A 2013 Sol. Energy 90 123
[33] Jiang L L, Maskell D L, Patra J C 2013 Appl. Energy 112 185
[34] [35] [36] Gong W Y, Cai Z H 2013 Sol. Energy 94 209
[37] Corless R M, Gonnet G H, Hare D E G, Jeffrey D J, Knuth D E 1996 Adv. Comput. Math. 5 329
[38] [39] Jain A, Kapoor A 2004 Sol. Energy Mater. Sol. Cells 81 269
[40] [41] Ortiz-Conde A, Garca Snchez F J 2005 Solid-State Electron. 49 465
[42] [43] Ortiz-Conde A, Garca Snchez F J, Muci J 2006 Sol. Energy Mater. Sol. Cells 90 352
[44] [45] Ding J L 2007 Ph. D. Dissertation (Hefei: Universityof Science and Technology of China) (in Chinese)[丁金磊2007 博士学位论文(合肥: 中国科学技术大学)]
[46] [47] Chen Y F, Wang X M, Li D, Hong R J, Shen H 2011 Appl. Energy 88 2239
[48] [49] [50] Peng L L, Sun Y Z, Meng Z, Wang Y L, Xu Y 2013 J. Power Sources 227 131
[51] Wang Y L, SunY Z, Peng L L, Xu Y 2012 Acta Phys. Sin. 61 248402 (in Chinese)[王玉玲, 孙以泽, 彭乐乐, 徐洋 2012 61 248402]
[52] [53] Zhang C F, Zhang J C, Hao Y, Lin Z H, Zhu C X 2011 J. Appl. Phys. 110 0645041
[54] [55] Nelder J A, Mead R 1965 Comput. J. 7 308
[56] [57] [58] William H P, Saul A T, William T V, Brian P F 2007 Numerical Recipes: the Art of Scientific Computing (3rd Ed.) (Cambridge: Cambridge University Press) p502
[59] [60] Gao F C, Han L X 2012 Comput. Optim. Appl. 51 259
[61] -
[1] Easwarakhanthan T, Bottin J, Bouhouch I, Boutrit C 1986 Int. J. Sol. Energy 4 1
[2] [3] [4] Zhang Z Z, Cheng X F 2014 Acta Phys. Sin. 63 118801 (in Chinese)[张忠政, 程晓舫 2014 63 118801]
[5] [6] Yi S G, Zhang W H, Ai B, Song J W, Shen H 2014 Chin. Phys. B 23 028801
[7] [8] Villalva M G, Gazoli J R, Filho E R 2009 IEEE Trans. Power Electron. 24 1198
[9] Gao X K, Yao C A, Gao X C, Yu Y C 2014 Trans. CSAE 6 97 (in Chinese)[高献坤, 姚传安, 高向川, 余泳昌 2014 农业工程学报 6 97]
[10] [11] Phang J C H, Chan D S H, Phillips J R 1984 Electron. Lett. 20 406
[12] [13] [14] Ishibashi K, Kimura Y, Niwano M 2008 J. Appl. Phys. 103 0945071
[15] [16] Cotfas D T, Cotfas P A, Kaplanis S 2013 Renew. Sust. Energ. Rev. 28 588
[17] [18] Zagrouba M, Sellami A, Bouacha M, Ksouri M 2010 Sol. Energy 84 860
[19] AlRashidi M R, AlHajri M F, EI-Naggar K M, AI-Othman A K 2011 Sol. Energy 85 1543
[20] [21] [22] EI-Naggar K M, AlRashidi M R, AlHajri M F, AI-Othman A K 2012 Sol. Energy 86 266
[23] AlHajri M F, EI-Naggar K M, AlRashidi M R, Al-Othman A K 2012 Renew. Energy 44 238
[24] [25] [26] Huang W, Jiang C, Xue L Y, Song D Y 2011 Proceedings of the 2011 International Conference on Electric Information and Control Engineering Wuhan, China, April 15-17, 2011 p398
[27] [28] Askarzadeh A, Rezazadeh A 2012 Sol. Energy 86 3241
[29] Askarzadeh A, Rezazadeh A 2013 Appl. Energy 102 943
[30] [31] [32] Askarzadeh A, Rezazadeh A 2013 Sol. Energy 90 123
[33] Jiang L L, Maskell D L, Patra J C 2013 Appl. Energy 112 185
[34] [35] [36] Gong W Y, Cai Z H 2013 Sol. Energy 94 209
[37] Corless R M, Gonnet G H, Hare D E G, Jeffrey D J, Knuth D E 1996 Adv. Comput. Math. 5 329
[38] [39] Jain A, Kapoor A 2004 Sol. Energy Mater. Sol. Cells 81 269
[40] [41] Ortiz-Conde A, Garca Snchez F J 2005 Solid-State Electron. 49 465
[42] [43] Ortiz-Conde A, Garca Snchez F J, Muci J 2006 Sol. Energy Mater. Sol. Cells 90 352
[44] [45] Ding J L 2007 Ph. D. Dissertation (Hefei: Universityof Science and Technology of China) (in Chinese)[丁金磊2007 博士学位论文(合肥: 中国科学技术大学)]
[46] [47] Chen Y F, Wang X M, Li D, Hong R J, Shen H 2011 Appl. Energy 88 2239
[48] [49] [50] Peng L L, Sun Y Z, Meng Z, Wang Y L, Xu Y 2013 J. Power Sources 227 131
[51] Wang Y L, SunY Z, Peng L L, Xu Y 2012 Acta Phys. Sin. 61 248402 (in Chinese)[王玉玲, 孙以泽, 彭乐乐, 徐洋 2012 61 248402]
[52] [53] Zhang C F, Zhang J C, Hao Y, Lin Z H, Zhu C X 2011 J. Appl. Phys. 110 0645041
[54] [55] Nelder J A, Mead R 1965 Comput. J. 7 308
[56] [57] [58] William H P, Saul A T, William T V, Brian P F 2007 Numerical Recipes: the Art of Scientific Computing (3rd Ed.) (Cambridge: Cambridge University Press) p502
[59] [60] Gao F C, Han L X 2012 Comput. Optim. Appl. 51 259
[61]
计量
- 文章访问数: 6477
- PDF下载量: 482
- 被引次数: 0