搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同轴波导虚阴极振荡器二极管参数优化的研究

刘静 舒挺 李志强

引用本文:
Citation:

同轴波导虚阴极振荡器二极管参数优化的研究

刘静, 舒挺, 李志强

Theoretical and numerical study on optimization of diode parameters in virtual cathode oscillator

Liu Jing, Shu Ting, Li Zhi-Qiang
PDF
导出引用
  • 采用粒子模拟研究了同轴波导虚阴极振荡器二极管参数对微波效率和频率的影响,得到了由二极管参数改变引起的二极管阻抗变化及其对微波效率的影响规律. 借鉴具有慢波结构的高功率微波器件中微波模式特性阻抗的计算方法,给出同轴波导虚阴极振荡器中微波主模式特性阻抗的理论计算公式. 将理论计算结果与由粒子模拟对器件进行优化后得到的二极管阻抗进行比较,发现当反映电子束特性的二极管阻抗与微波主模式特性阻抗匹配时,虚阴极振荡器具有较高的束波功率转换效率. 进一步用特性阻抗对其他几种典型结构的虚阴极振荡器进行分析,验证了该方法的合理性,为设计高效率虚阴极振荡器提供了理论指导.
    The dependences of microwave efficiency and frequency on the parameters of diode in virtual cathode oscillator (VCO) are studied with particle-in-cell simulations, which further gives the effects of diode impedance on microwave efficiency and frequency. The characteristic impedance of microwave mode in virtual cathode oscillator is derived as in other high power microwave generators with slow-wave configurations and is used to analyze the optimization of diode parameters. It is shown that the optimal values of diode parameters are obtained when the diode impedance matches with the characteristic impedance of microwave mode in VCO with coaxial wave guide as well as in VCOs with other configurations. This is a good theoretical explanation for the optimization of diode in VCO and can be used to guide the design of devices.
    • 基金项目: 国家高技术研究发展计划资助的课题.
    [1]

    James B,Swegle J A,Schamiloglu E 2007 High Power Microwaves(Second Edition) (Taylor Francis Group,LLC)

    [2]

    Zherlitsyn A G, Melnikov G V, Isakov P Ya 2007 Journal of communication technology and electronics 52 798

    [3]
    [4]
    [5]

    Chen Y, Mankowski J, Walter J, Kristiansen M, Gale R 2007 IEEE Transactions on Dielectrics and Electrical Insulation 14 1037

    [6]
    [7]

    Li Z Q,Zhong H H,Fan Y W,Shu T,Yang J H,Yuan C W,Xu L R,Zhao Y S 2008 Chin. Phy. Lett. 25 2566

    [8]
    [9]

    Luo X,Liao C,Meng F B,Zhang Y J,Wang X D 2007 High Power Laser and Particle Beams 19 92 (in Chinese) [罗 雄、廖 成、孟凡宝、张运俭、王晓东 2007 强激光与粒子束 19 92]

    [10]

    Shao H, Liu G Z, Yang Z F 2006 High Power Laser and Particle Beams 18 230(in Chinese) [邵 浩、刘国治、杨占锋 2006 强激光与粒子束 18 230]

    [11]
    [12]
    [13]

    Shao H,Liu G Z 2001 Acta Phys. Sin. 50 2387 (in Chinese) [邵 浩、刘国治 2001 50 2387]

    [14]

    Sung K Y, Jeon W, Jung Y, Lim J E, Uhm H S, Choi E H 2005 IEEE Trans. Plasma Sci. 33 1353

    [15]
    [16]
    [17]

    Choi E H, Choi M C, Choi S H, Song K B, Jung Y, Seo Y H, Shin H M, Uhm H S, Lim D W, Kim C H, Lee J M, Ahn J W 2002 IEEE Trans. Plasma Sci. 30 1728

    [18]

    Grigoryev V P, Koval T V 1999 IEEE International University Conference Electronics and Radiophysics of Ultra-High Frequencies 198

    [19]
    [20]
    [21]

    Song K B, Lim J E, Seo Y, Choi E H 2009 IEEE Trans. Plasma Sci. 37 304

    [22]

    Liu Y,Gong H R,Wei Y Y,Gong Y B,Wang W X,Liao F J 2009 Acta Phys. Sin. 58 7845 (in Chinese) [刘 漾、巩华荣、魏彦玉、宫玉彬、王文祥、廖复疆 2009 58 7845]

    [23]
    [24]

    Dong Y H, Ding Y G, Xiao L 2005 Acta Phys. Sin. 54 5629 (in Chinese) [董玉和、丁耀根、肖 刘 2005 54 5629]

    [25]
    [26]

    Tarakanov V P User's Manual for Code KARAT 2004 Virginia: Berkeley Research Associate inc.

    [27]
    [28]

    Liu J,Li Z Q,Shu T 2010 Acta Phys. Sin. 59 2629(in Chinese) [刘 静、李志强、舒 挺 2010 59 2629]

    [29]
    [30]
    [31]

    Liu J, Li Z Q 2008 17th International Conference On High-Power Particle Beams, Xi'an, China

    [32]
    [33]

    Jiang W, Woolverton K, Dickens J, Kristiansen M 1999 IEEE Trans. Plasma Sci. 27 1538

    [34]

    Shu T, Wang Y, Qian B L, Tan Q M 2002 Chin. Phy. Lett. 19 1646

    [35]
  • [1]

    James B,Swegle J A,Schamiloglu E 2007 High Power Microwaves(Second Edition) (Taylor Francis Group,LLC)

    [2]

    Zherlitsyn A G, Melnikov G V, Isakov P Ya 2007 Journal of communication technology and electronics 52 798

    [3]
    [4]
    [5]

    Chen Y, Mankowski J, Walter J, Kristiansen M, Gale R 2007 IEEE Transactions on Dielectrics and Electrical Insulation 14 1037

    [6]
    [7]

    Li Z Q,Zhong H H,Fan Y W,Shu T,Yang J H,Yuan C W,Xu L R,Zhao Y S 2008 Chin. Phy. Lett. 25 2566

    [8]
    [9]

    Luo X,Liao C,Meng F B,Zhang Y J,Wang X D 2007 High Power Laser and Particle Beams 19 92 (in Chinese) [罗 雄、廖 成、孟凡宝、张运俭、王晓东 2007 强激光与粒子束 19 92]

    [10]

    Shao H, Liu G Z, Yang Z F 2006 High Power Laser and Particle Beams 18 230(in Chinese) [邵 浩、刘国治、杨占锋 2006 强激光与粒子束 18 230]

    [11]
    [12]
    [13]

    Shao H,Liu G Z 2001 Acta Phys. Sin. 50 2387 (in Chinese) [邵 浩、刘国治 2001 50 2387]

    [14]

    Sung K Y, Jeon W, Jung Y, Lim J E, Uhm H S, Choi E H 2005 IEEE Trans. Plasma Sci. 33 1353

    [15]
    [16]
    [17]

    Choi E H, Choi M C, Choi S H, Song K B, Jung Y, Seo Y H, Shin H M, Uhm H S, Lim D W, Kim C H, Lee J M, Ahn J W 2002 IEEE Trans. Plasma Sci. 30 1728

    [18]

    Grigoryev V P, Koval T V 1999 IEEE International University Conference Electronics and Radiophysics of Ultra-High Frequencies 198

    [19]
    [20]
    [21]

    Song K B, Lim J E, Seo Y, Choi E H 2009 IEEE Trans. Plasma Sci. 37 304

    [22]

    Liu Y,Gong H R,Wei Y Y,Gong Y B,Wang W X,Liao F J 2009 Acta Phys. Sin. 58 7845 (in Chinese) [刘 漾、巩华荣、魏彦玉、宫玉彬、王文祥、廖复疆 2009 58 7845]

    [23]
    [24]

    Dong Y H, Ding Y G, Xiao L 2005 Acta Phys. Sin. 54 5629 (in Chinese) [董玉和、丁耀根、肖 刘 2005 54 5629]

    [25]
    [26]

    Tarakanov V P User's Manual for Code KARAT 2004 Virginia: Berkeley Research Associate inc.

    [27]
    [28]

    Liu J,Li Z Q,Shu T 2010 Acta Phys. Sin. 59 2629(in Chinese) [刘 静、李志强、舒 挺 2010 59 2629]

    [29]
    [30]
    [31]

    Liu J, Li Z Q 2008 17th International Conference On High-Power Particle Beams, Xi'an, China

    [32]
    [33]

    Jiang W, Woolverton K, Dickens J, Kristiansen M 1999 IEEE Trans. Plasma Sci. 27 1538

    [34]

    Shu T, Wang Y, Qian B L, Tan Q M 2002 Chin. Phy. Lett. 19 1646

    [35]
  • [1] 张运俭, 丁恩燕. 反馈型TM01主模同轴虚阴极振荡器.  , 2019, 68(20): 204101. doi: 10.7498/aps.68.20190696
    [2] 沈文渊, 王虎, 耿志辉, 杜朝海, 刘濮鲲. 基于波导模式变换的圆波导TE62模式激励器的研究.  , 2013, 62(23): 238403. doi: 10.7498/aps.62.238403
    [3] 杨超, 刘大刚, 周俊, 廖臣, 彭凯, 刘盛纲. 一种新型径向三腔同轴虚阴极振荡器全三维粒子模拟研究.  , 2011, 60(8): 084102. doi: 10.7498/aps.60.084102
    [4] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性.  , 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [5] 刘静, 舒挺, 李志强. 新型反馈式轴向同轴虚阴极振荡器.  , 2010, 59(4): 2629-2634. doi: 10.7498/aps.59.2629
    [6] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究.  , 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [7] 邹建华, 陶洪, 吴宏滨, 彭俊彪. 修饰阴极界面提高聚合物白光二极管发光效率.  , 2009, 58(2): 1224-1228. doi: 10.7498/aps.58.1224
    [8] 李春, 彭俊彪, 曾文进. 新型TPBI/Ag阴极结构的红色有机发光二极管.  , 2009, 58(3): 1992-1996. doi: 10.7498/aps.58.1992
    [9] 刘漾, 巩华荣, 魏彦玉, 宫玉彬, 王文祥, 廖复疆. 有效抑制光子晶体加载矩形谐振腔中模式竞争的方法.  , 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [10] 顾晓玲, 郭 霞, 吴 迪, 李一博, 沈光地. 表面InGaN厚度对GaN基发光二极管特性的影响.  , 2008, 57(2): 1220-1223. doi: 10.7498/aps.57.1220
    [11] 王艳新, 张琦锋, 孙 晖, 常艳玲, 吴锦雷. ZnO纳米线二极管发光器件制备及特性研究.  , 2008, 57(2): 1141-1144. doi: 10.7498/aps.57.1141
    [12] 张新陆, 王月珠, 李 立, 鞠有伦. 激光二极管端面抽运Tm,Ho:YLF激光器双稳特性研究.  , 2008, 57(3): 1699-1703. doi: 10.7498/aps.57.1699
    [13] 孙可煦, 江少恩, 易荣清, 崔延莉, 丁永坤, 刘慎业. X射线二极管时间特性研究.  , 2006, 55(1): 68-75. doi: 10.7498/aps.55.68
    [14] 董玉和, 丁耀根, 肖 刘. 同轴谐振腔高阶横磁模式参数的研究.  , 2005, 54(12): 5629-5636. doi: 10.7498/aps.54.5629
    [15] 夏连胜, 王 勐, 黄子平, 张开志, 石金水, 章林文, 邓建军. 强流电子二极管中阴极等离子体的膨胀.  , 2004, 53(10): 3435-3439. doi: 10.7498/aps.53.3435
    [16] 邵浩, 刘国治. 向外发射同轴型虚阴极振荡器研究.  , 2001, 50(12): 2387-2392. doi: 10.7498/aps.50.2387
    [17] 林为干, 曾令儒. 椭圆外导体-矩形内导体同轴线的特性阻抗.  , 1981, 30(1): 12-21. doi: 10.7498/aps.30.12
    [18] 林为干. 具有矩形内导体,圆柱外导体的同轴线的特性阻抗.  , 1977, 26(1): 72-78. doi: 10.7498/aps.26.72
    [19] 易明銧. 非线性偏置条件下隧道二极管中的触发振荡.  , 1974, 23(5): 23-42. doi: 10.7498/aps.23.23
    [20] 林为干. 脊峰形同轴波导的工作特性.  , 1961, 17(4): 170-179. doi: 10.7498/aps.17.170
计量
  • 文章访问数:  8737
  • PDF下载量:  751
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-03
  • 修回日期:  2010-12-21
  • 刊出日期:  2011-05-05

/

返回文章
返回
Baidu
map