搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变组分AlGaAs/GaAs透射式光电阴极分辨力特性分析

邓文娟 彭新村 邹继军 江少涛 郭栋 张益军 常本康

引用本文:
Citation:

变组分AlGaAs/GaAs透射式光电阴极分辨力特性分析

邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康

Resolution characteristic of graded band-gap AlGaAs/GaAs transmission-mode photocathodes

Deng Wen-Juan, Peng Xin-Cun, Zou Ji-Jun, Jiang Shao-Tao, Guo Dong, Zhang Yi-Jun, Chang Ben-Kang
PDF
导出引用
  • 建立了变组分AlGaAs/GaAs光电阴极二维载流子输运连续性方程. 在一定的边界条件下,利用数值计算方法对此方程进行求解,得到了变组分AlGaAs/GaAs光电阴极调制传递函数(MTF)理论计算模型. 利用该模型计算了透射式变组分和均匀组分阴极的理论MTF,分析了分辨力与Al组分变化范围、入射光子波长、AlGaAs和GaAs层厚度的关系. 计算结果表明,变组分阴极与均匀组分阴极相比,阴极分辨力显著提高. 当空间频率f在100–500 lp·mm-1区间时,分辨力的提高最为明显,如当f=200 lp·mm-1 时,一般可提高150%–260%. 变组分阴极分辨力的提高是内建电场作用的结果,但内建电场太大时,也会由于Al组分含量过高而影响阴极的长波响应.
    The modulation transfer function (MTF) of graded band-gap AlGaAs/GaAs transmission-mode photocathodes is numerically solved from the two-dimensional continuity equations. According to the MTF model, we calculate the theoretical MTF of graded band-gap and uniform band-gap transmission-mode photocathodes, and analyze the effects of Al composition, wavelength of incident photon, and thickness values of AlGaAs and GaAs layer on the resolution. The calculated results show that compared with the uniform band-gap photocathode, the graded band-gap structure can increase the resolution of photocathode evidently. If the spatial frequency f ranges from 100 to 500 lp·mm-1, the increase of resolution is more pronounced. Let f=200 lp·mm-1, the resolution of graded band-gap photocathode generally increases 150%-260%. The resolution improvement of graded band-gap photocathode is attributed to the built-in electric field. While too high built-in electric field will influence the spectral response of long-wavelength photons due to higher Al composition in the AlGaAs/GaAs photocathodes.
    • 基金项目: 国家自然科学基金(批准号:61067001,61261009,61301023)、教育部科学技术研究重点项目(批准号:212090)、江西省自然科学基金(批准号:20114BAB202009)和江西省教育厅科技项目(批准号:GJJ11491)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61067001, 61261009, 61301023), the Key Program of Science and Technology Research of Ministry of Education, China (Grant No. 212090), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20114BAB202009), and the Science and Technology Foundation of Education Bureau of Jiangxi Province, China (Grant No. GJJ11491).
    [1]

    Turnbull A A, Evans G B 1968 J. Phys. D: Appl. Phys. 1 155

    [2]

    Reng L, Shi F, Guo H, Cui D X, Shi J F, Qian Y S, Wang H G, Chang B K 2013 Acta Phys. Sin. 62 014206 (in Chinese) [任玲, 石峰, 郭晖, 崔东旭, 史继芳, 钱芸生, 王洪刚, 常本康 2013 62 014206]

    [3]

    Zhou L W, Li Y, Zhang Z Q, Monastyrski M A, Schelev M Y 2005 Acta Phys. Sin. 54 3591 (in Chinese) [周立伟, 李元, 张智诠, Monastyrski M A, Schelev M Y 2005 54 3591]

    [4]

    Estrera J P, Bender E J, Giordana A, Glesener J W, Iosue M, Lin P P, Sinor T W 2000 Proc. SPIE 4128 46

    [5]

    Zhao J, Chang B K, Zhang Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2012 Acta Phys. Sin. 61 037803 (in Chinese) [赵静, 常本康, 张益军, 张俊举, 石峰, 程宏昌, 崔东旭 2012 61 037803]

    [6]

    Beauvais J, Chautemps J, Groot P D 1986 Adv. Electron. Electron Phys. 64A 267

    [7]

    Sinor T W, Estrera J P, Phillips D L, Rector M K 1995 Proc. SPIE 2551 130

    [8]

    Chen X L, Zhao J, Chang B K, Xu Y, Zhang Y J, Jin M C, Hao G H 2013 Acta Phys. Sin. 62 037303 (in Chinese) [陈鑫龙, 赵静, 常本康, 徐源, 张益军, 金睦淳, 郝广辉 2013 62 037303]

    [9]

    Zutic I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [10]

    Cai Z P, Yang W Z, Tang W D, Hou X 2012 Acta Phys. Sin. 61 187901 (in Chinese) [蔡志鹏, 杨文正, 唐伟东, 侯洵 2012 61 187901]

    [11]

    Zou J J, Chang B K, Yang Z, Zhang Y J, Qiao J L 2009 Acta Phys. Sin. 58 5842 (in Chinese) [邹继军, 常本康, 杨智, 张益军, 乔建良 2009 58 5842]

    [12]

    Qi X J, Lin B, Cao X Q, Chen Y Q 2008 Acta Phys. Sin. 57 2854 (in Chinese) [戚巽骏, 林斌, 曹向群, 陈钰清 2008 57 2854]

    [13]

    Yan J L, Zhao Y N, Zhu C C 1999 Semicond. Optoelectron. 20 252 (in Chinese) [闫金良, 赵银女, 朱长纯 1999 半导体光电 20 252]

    [14]

    Ren L, Chang B K 2011 Chin. Phys. B 20 087308

    [15]

    Levinshtein M, Rumyantsev R, Shur M 1999 Handbook Series on Semiconductor Parameters (Vol.2) (London: World Scientific) pp1-36

    [16]

    Zarem H A, Lebens J A, Nordstrom K B, Sercel P C, Sanders S, Eng L E, Yariv A, Vahala K J 1989 Appl. Phys. Lett. 55 2622

    [17]

    Timmons M L, Hutchby J A, Ahrenkiel R K, Dunlavy D J 1988 GaAs and Related Compounds (Ser. 96) (Bristol and Philadelphia: Institute of Physics) pp289-294

    [18]

    Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754

  • [1]

    Turnbull A A, Evans G B 1968 J. Phys. D: Appl. Phys. 1 155

    [2]

    Reng L, Shi F, Guo H, Cui D X, Shi J F, Qian Y S, Wang H G, Chang B K 2013 Acta Phys. Sin. 62 014206 (in Chinese) [任玲, 石峰, 郭晖, 崔东旭, 史继芳, 钱芸生, 王洪刚, 常本康 2013 62 014206]

    [3]

    Zhou L W, Li Y, Zhang Z Q, Monastyrski M A, Schelev M Y 2005 Acta Phys. Sin. 54 3591 (in Chinese) [周立伟, 李元, 张智诠, Monastyrski M A, Schelev M Y 2005 54 3591]

    [4]

    Estrera J P, Bender E J, Giordana A, Glesener J W, Iosue M, Lin P P, Sinor T W 2000 Proc. SPIE 4128 46

    [5]

    Zhao J, Chang B K, Zhang Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2012 Acta Phys. Sin. 61 037803 (in Chinese) [赵静, 常本康, 张益军, 张俊举, 石峰, 程宏昌, 崔东旭 2012 61 037803]

    [6]

    Beauvais J, Chautemps J, Groot P D 1986 Adv. Electron. Electron Phys. 64A 267

    [7]

    Sinor T W, Estrera J P, Phillips D L, Rector M K 1995 Proc. SPIE 2551 130

    [8]

    Chen X L, Zhao J, Chang B K, Xu Y, Zhang Y J, Jin M C, Hao G H 2013 Acta Phys. Sin. 62 037303 (in Chinese) [陈鑫龙, 赵静, 常本康, 徐源, 张益军, 金睦淳, 郝广辉 2013 62 037303]

    [9]

    Zutic I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323

    [10]

    Cai Z P, Yang W Z, Tang W D, Hou X 2012 Acta Phys. Sin. 61 187901 (in Chinese) [蔡志鹏, 杨文正, 唐伟东, 侯洵 2012 61 187901]

    [11]

    Zou J J, Chang B K, Yang Z, Zhang Y J, Qiao J L 2009 Acta Phys. Sin. 58 5842 (in Chinese) [邹继军, 常本康, 杨智, 张益军, 乔建良 2009 58 5842]

    [12]

    Qi X J, Lin B, Cao X Q, Chen Y Q 2008 Acta Phys. Sin. 57 2854 (in Chinese) [戚巽骏, 林斌, 曹向群, 陈钰清 2008 57 2854]

    [13]

    Yan J L, Zhao Y N, Zhu C C 1999 Semicond. Optoelectron. 20 252 (in Chinese) [闫金良, 赵银女, 朱长纯 1999 半导体光电 20 252]

    [14]

    Ren L, Chang B K 2011 Chin. Phys. B 20 087308

    [15]

    Levinshtein M, Rumyantsev R, Shur M 1999 Handbook Series on Semiconductor Parameters (Vol.2) (London: World Scientific) pp1-36

    [16]

    Zarem H A, Lebens J A, Nordstrom K B, Sercel P C, Sanders S, Eng L E, Yariv A, Vahala K J 1989 Appl. Phys. Lett. 55 2622

    [17]

    Timmons M L, Hutchby J A, Ahrenkiel R K, Dunlavy D J 1988 GaAs and Related Compounds (Ser. 96) (Bristol and Philadelphia: Institute of Physics) pp289-294

    [18]

    Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754

  • [1] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能.  , 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/${\boldsymbol{\beta }}$-Bi2O3界面电学性能.  , 2022, 71(2): 026801. doi: 10.7498/aps.71.20210635
    [3] 邓文娟, 朱斌, 王壮飞, 彭新村, 邹继军. 变掺杂变组分AlxGa1–xAs/GaAs反射式光电阴极分辨力特性.  , 2022, 71(15): 157901. doi: 10.7498/aps.71.20220244
    [4] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器.  , 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [5] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/β-Bi2O3界面电学性能研究.  , 2021, (): . doi: 10.7498/aps.70.20210635
    [6] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响.  , 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [7] 张美, 李奎念, 李阳, 盛亮, 张艳红. 一种新型的液闪阵列成像屏空间分辨特性.  , 2020, 69(6): 062801. doi: 10.7498/aps.69.20191545
    [8] 段亚轩, 刘尚阔, 陈永权, 薛勋, 赵建科, 高立民. Bayer滤波型彩色相机调制传递函数测量方法.  , 2017, 66(7): 074204. doi: 10.7498/aps.66.074204
    [9] 袁铮, 董建军, 李晋, 陈韬, 张文海, 曹柱荣, 杨志文, 王静, 赵阳, 刘慎业, 杨家敏, 江少恩. 分幅变像管动态空间分辨率的标定.  , 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [10] 李秀坤, 孟祥夏, 夏峙. 水下目标几何声散射回波在分数阶傅里叶变换域中的特性.  , 2015, 64(6): 064302. doi: 10.7498/aps.64.064302
    [11] 赵凤岐, 张敏, 李志强, 姬延明. 纤锌矿In0.19Ga0.81N/GaN量子阱中光学声子和内建电场对束缚极化子结合能的影响.  , 2014, 63(17): 177101. doi: 10.7498/aps.63.177101
    [12] 蔡志鹏, 杨文正, 唐伟东, 侯洵. 大梯度指数掺杂透射式GaAs光电阴极响应特性的理论分析.  , 2012, 61(18): 187901. doi: 10.7498/aps.61.187901
    [13] 张荣福, 王涛, 潘超, 王亮亮, 庄松林. 波前编码系统景深延拓性能研究.  , 2011, 60(11): 114204. doi: 10.7498/aps.60.114204
    [14] 张益军, 牛军, 赵静, 邹继军, 常本康. 指数掺杂结构对透射式GaAs光电阴极量子效率的影响研究.  , 2011, 60(6): 067301. doi: 10.7498/aps.60.067301
    [15] 邹继军, 常本康, 杨智, 张益军, 乔建良. 指数掺杂GaAs光电阴极分辨力特性分析.  , 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [16] 戚巽骏, 林 斌, 曹向群, 陈钰清. 基于调制传递函数的光学低通滤波器评价模型与实验研究.  , 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [17] 邹继军, 常本康, 杨 智. 指数掺杂GaAs光电阴极量子效率的理论计算.  , 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [18] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制.  , 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [19] 田进寿, 赵宝升, 吴建军, 赵 卫, 刘运全, 张 杰. 飞秒电子衍射系统中调制传递函数的理论计算.  , 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
    [20] 邵嘉平, 胡 卉, 郭文平, 汪 莱, 罗 毅, 孙长征, 郝智彪. 高In组分InxGa1-xN/GaN多量子阱材料电致荧光谱的研究.  , 2005, 54(8): 3905-3909. doi: 10.7498/aps.54.3905
计量
  • 文章访问数:  6264
  • PDF下载量:  468
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-01
  • 修回日期:  2014-04-29
  • 刊出日期:  2014-08-05

/

返回文章
返回
Baidu
map