搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属壁与介质窗之间次级电子倍增效应的研究

张雪 王勇 范俊杰 朱方 张瑞

引用本文:
Citation:

金属壁与介质窗之间次级电子倍增效应的研究

张雪, 王勇, 范俊杰, 朱方, 张瑞

Multipactor phenomenon between metal anddielectric window

Zhang Xue, Wang Yong, Fan Jun-Jie, Zhu Fang, Zhang Rui
PDF
导出引用
  • 高功率盒形窗内的TM11模法向电场对次级电子倍增现象具有较大的影响,特别是在介质窗片与金属波导壁相对的区域,易发生双面次级电子倍增. 采用蒙特卡罗粒子模拟方法,研究了法向电场作用下氧化铝陶瓷窗片与铜波导壁之间的双面倍增敏感曲线、倍增阈值电压、粒子数量的演变过程以及粒子运动轨迹. 通过对相关参数的分析,获得了金属壁与陶瓷窗片之间双面谐振倍增和非谐振倍增的规律以及双面倍增向单面倍增转变的特点. 此研究可为分析窗片失效机理提供理论依据.
    The multipactor phenomenon between metal wall and dielectric window disk of pill-box window can behave as double surface multipactor, which is affected by the normal electric field of TM11 mode. The Monte Carlo code is used to build up simulation model, calculate the multipactor susceptive curve, threshold voltage, evolution of particle number, and the trajectory of particle motion under the action of double surface normal field between alumina window and copper wall. Through investigating the behavior of secondary electrons, the regularity of normal field double surface resonant multipactor and non-resonant multiapctor is achieved. Besides, the feature of the transform from double-surface multipactor to single-surface multipactor is also obtained. This research can provide a theoretical basis for window breakdown mechanism analysis.
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB328901)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB328901).
    [1]

    Hatch A J, Williams H B 1954 J. Appl. Phys. 25 417

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172

    [3]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193

    [4]

    Kishek R A 1997 Ph. D. Dissertation (Ann Arbor:University of Michigan)

    [5]

    Hemmert D, Neuber A A, Dickens J C, Krompholz H, Hatfield L L, Kristiansen M 2000 Proc. SPIE 4031 90

    [6]

    Neuber A, Hemmert D, Dickens J, Krompholz H, Hatfield L L, Kristiansen M 1998 IEEE Trans. Plasma Sci. 26 296

    [7]

    Yamaguchi S, Saito Y, Anami S, Michizono S 1992 IEEE Trans. Nucl. Sci. 39 278

    [8]

    Saito Y, Michizono S, Anami S, Kobayashi S 1993 IEEE Trans. Electr. Insul. 28 566

    [9]

    Cheng G X 2008 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [程国新 2008 硕士学位论文(长沙: 国防科学技术大学研究生院)]

    [10]

    Cheng G X, Cai D, Hong Z Q, Liu L 2013 IEEE Trans. Dielect. Electr. Insul. 20 1942

    [11]

    Cheng G X, Liu L 2011 Phys. Plasmas 18 033507

    [12]

    Cheng G X, Liu L 2011 IEEE Trans. Plasma Sci. 39 1067

    [13]

    Cheng G X, Liu L 2013 Appl. Phys. Lett. 102 243506

    [14]

    Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268 (in Chinese) [蔡利兵, 王建国 2009 58 3268]

    [15]

    Cai L B, Wang J G, Zhu X Q 2011 Acta Phys. Sin. 60 085101 (in Chinese) [蔡利兵, 王建国, 朱湘琴 2011 60 085101]

    [16]

    Chang C, Fang J Y, Zhang Z Q, Chen C H, Tang C X, Jin Q L 2010 Appl. Phys. Lett. 96 111502

    [17]

    Chang C, Liu G Z, Huang H J, Chen C H, Fang J Y 2009 Phys. Plasmas 16 083501

    [18]

    Chang C, Huang H J, Liu G Z, Chen C H, Hou Q 2009 J. Appl. Phys. 105 123305

    [19]

    Fan J Q, Hao J H 2011 Chin. Phys. B 20 068402

    [20]

    Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D, Zhang J F 2014 Chin. Phys. B 23 048402

    [21]

    Zhu F, Zhang Z C, Dai S, Luo J R 2011 Acta Phys. Sin. 60 084103 (in Chinese) [朱方, 张兆传, 戴舜, 罗继润 2011 60 084103]

    [22]

    Rasch J, Johansson J F 2012 Phys. Plasmas 19 123505

    [23]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [24]

    Dong Y, Dong Z W, Yang W Y 2011 High Power Laser Particle Beams 23 454 (in Chinese) [董烨, 董志伟, 杨温渊 2011 强激光与粒子束 23 454]

    [25]

    Kryazhev A, Buyanova M, Semenov V, Anderson D, Lisak M, Puech J, Lapierre L, Sombrin J 2002 Phys. Plasmas 9 4736

    [26]

    Sazontov A, Buyanova M, Semenov V, Rakova E,Vdovicheva N 2005 Phys. Plasmas 12 053102

  • [1]

    Hatch A J, Williams H B 1954 J. Appl. Phys. 25 417

    [2]

    Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172

    [3]

    Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193

    [4]

    Kishek R A 1997 Ph. D. Dissertation (Ann Arbor:University of Michigan)

    [5]

    Hemmert D, Neuber A A, Dickens J C, Krompholz H, Hatfield L L, Kristiansen M 2000 Proc. SPIE 4031 90

    [6]

    Neuber A, Hemmert D, Dickens J, Krompholz H, Hatfield L L, Kristiansen M 1998 IEEE Trans. Plasma Sci. 26 296

    [7]

    Yamaguchi S, Saito Y, Anami S, Michizono S 1992 IEEE Trans. Nucl. Sci. 39 278

    [8]

    Saito Y, Michizono S, Anami S, Kobayashi S 1993 IEEE Trans. Electr. Insul. 28 566

    [9]

    Cheng G X 2008 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [程国新 2008 硕士学位论文(长沙: 国防科学技术大学研究生院)]

    [10]

    Cheng G X, Cai D, Hong Z Q, Liu L 2013 IEEE Trans. Dielect. Electr. Insul. 20 1942

    [11]

    Cheng G X, Liu L 2011 Phys. Plasmas 18 033507

    [12]

    Cheng G X, Liu L 2011 IEEE Trans. Plasma Sci. 39 1067

    [13]

    Cheng G X, Liu L 2013 Appl. Phys. Lett. 102 243506

    [14]

    Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268 (in Chinese) [蔡利兵, 王建国 2009 58 3268]

    [15]

    Cai L B, Wang J G, Zhu X Q 2011 Acta Phys. Sin. 60 085101 (in Chinese) [蔡利兵, 王建国, 朱湘琴 2011 60 085101]

    [16]

    Chang C, Fang J Y, Zhang Z Q, Chen C H, Tang C X, Jin Q L 2010 Appl. Phys. Lett. 96 111502

    [17]

    Chang C, Liu G Z, Huang H J, Chen C H, Fang J Y 2009 Phys. Plasmas 16 083501

    [18]

    Chang C, Huang H J, Liu G Z, Chen C H, Hou Q 2009 J. Appl. Phys. 105 123305

    [19]

    Fan J Q, Hao J H 2011 Chin. Phys. B 20 068402

    [20]

    Li Y, Cui W Z, Zhang N, Wang X B, Wang H G, Li Y D, Zhang J F 2014 Chin. Phys. B 23 048402

    [21]

    Zhu F, Zhang Z C, Dai S, Luo J R 2011 Acta Phys. Sin. 60 084103 (in Chinese) [朱方, 张兆传, 戴舜, 罗继润 2011 60 084103]

    [22]

    Rasch J, Johansson J F 2012 Phys. Plasmas 19 123505

    [23]

    Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290

    [24]

    Dong Y, Dong Z W, Yang W Y 2011 High Power Laser Particle Beams 23 454 (in Chinese) [董烨, 董志伟, 杨温渊 2011 强激光与粒子束 23 454]

    [25]

    Kryazhev A, Buyanova M, Semenov V, Anderson D, Lisak M, Puech J, Lapierre L, Sombrin J 2002 Phys. Plasmas 9 4736

    [26]

    Sazontov A, Buyanova M, Semenov V, Rakova E,Vdovicheva N 2005 Phys. Plasmas 12 053102

  • [1] 舒盼盼, 赵朋程, 王瑞. 110 GHz微波输出窗内表面次级电子倍增特性的电磁粒子模拟.  , 2023, 72(9): 095202. doi: 10.7498/aps.72.20222235
    [2] 陈延辉, 谢伟博, 代克杰, 高玲肖, 卢山, 陈鑫, 李宇航, 牟笑静. 非谐振式低频电磁-摩擦电复合振动能收集器.  , 2020, 69(20): 208402. doi: 10.7498/aps.69.20200793
    [3] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究.  , 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [4] 张雪, 王勇, 徐强. 双面次级电子倍增效应向单面次级电子倍增效应发展规律的研究.  , 2015, 64(20): 207902. doi: 10.7498/aps.64.207902
    [5] 张雪, 王勇, 范俊杰, 张瑞. 圆窗片表面次级电子倍增效应的数值模拟.  , 2014, 63(22): 227901. doi: 10.7498/aps.63.227901
    [6] 张雪, 范俊杰, 王勇. 刻周期半圆弧槽窗片对次级电子倍增效应的抑制.  , 2014, 63(22): 227902. doi: 10.7498/aps.63.227902
    [7] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟.  , 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [8] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究.  , 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [9] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究.  , 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [10] 蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富. 外磁场对介质表面次级电子倍增效应的影响.  , 2012, 61(7): 075101. doi: 10.7498/aps.61.075101
    [11] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟.  , 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [12] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究.  , 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [13] 蔡利兵, 王建国. 微波磁场和斜入射对介质表面次级电子倍增的影响.  , 2010, 59(2): 1143-1147. doi: 10.7498/aps.59.1143
    [14] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟.  , 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [15] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析.  , 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [16] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用.  , 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [17] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用.  , 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [18] 王世奇, 连贵君, 熊光成. La0.7Ca0.3MnO3和CeO2混合块状样品电输运性质及使用分形迭代电阻网络模型的计算模拟.  , 2005, 54(8): 3815-3821. doi: 10.7498/aps.54.3815
    [19] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟.  , 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [20] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性.  , 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
计量
  • 文章访问数:  6640
  • PDF下载量:  484
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-18
  • 修回日期:  2014-04-28
  • 刊出日期:  2014-08-05

/

返回文章
返回
Baidu
map