-
利用固态反应法制备了Mn3Sn1-xCoxC1.1 (x=0.05,0.1,0.2) 系列化合物,研究了Co掺杂对其磁性质、相变、熵变的影响. 随着Co掺杂量的增加,样品的居里温度由283 K先降到212 K (Mn3Sn0.9Co0.1C1.1) 后又升到332 K (Mn3Sn0.2Co0.8C1.1),相变类型由一级相变逐渐转变为二级相变. 增大Co的掺杂量,Mn3Sn1-xCoxC1.1化合物的熵变峰值逐渐减小,磁熵变温区由9 K展宽到300 K. 当Co掺杂量为0.2时,相对制冷量达到最高,为103 J/kg (磁场强度为1.6 MA/m). 由于室温附近良好的磁致冷效应,该类材料在磁制冷领域可能具有重要的应用前景.The Mn3Sn1-xCoxC1.1 compounds are synthesized by a solid-state reaction method. The effects of Co doping on the magnetic properties, phase transition and entropy change are investigated in Mn3Sn1-xCoxC1.1 compounds. The Curie temperature first decreases from 283 K to 212 K (Mn3Sn0.9Co0.1C1.1) with increasing the Co concentration, and then increases to 332 K (Mn3Sn0.2Co0.8C1.1) with further increasing the Co concentration in Mn3Sn1-xCoxC1.1. The first-order transition of Mn3Sn1-xCoxC1.1 gradually changes into the second-order transition, in the mean time, the entropy change decreases and the phase transition region broadens from 9 K to 300 K with increasing the Co content. Both the magnetic entropy change and broadening the transition temperature span can influence the relative cooling power R. Finally we obtain the large R=103 J/kg (H=1.6 MA/m) in Mn3Sn0.8Co0.2C1.1, which could be used as the room-temperature magnetic refrigerant materials.
[1] Zhong W, Au C T, Du Y W 2013 Chin. Phys. B 22 057501
[2] Ge H, Zhang X Q, Ke Y J, Jin J L, Liao Z X, Cheng Z H 2013 Chin. Phys. B 22 057502
[3] [4] [5] Shen B G, Hu F X, Dong Q Y, Sun J R 2013 Chin. Phys. B 22 017502
[6] Geng Y X, Tegus O, Bi L G 2012 Chin. Phys. B 21 037504
[7] [8] Wang Y T, Liu Z D, Yi J, Xue Z Y 2012 Acta Phys. Sin. 61 056102 (in Chinese) [王永田, 刘宗德, 易军, 薛志勇 2012 61 056102]
[9] [10] Zhang L G, Chen J, Zhu B Q, Li Y W, Wang R W, Li Y B, Zhang G H, Li Y 2006 Acta Phys. Sin. 55 5506 (in Chinese) [张立刚, 陈静, 朱伯铨, 李亚伟, 汪汝武, 李云宝, 张国宏, 李钰 2006 55 5506]
[11] [12] [13] Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545
[14] Tohei T, Wada H, Kanomata T 2003 J. Appl. Phys. 94 1800
[15] [16] [17] Yu M H, Lewis L H, Moodenbaugh A R 2003 J. Appl. Phys. 93 10128
[18] Kaneko T, Kanomata T, Miura S, Kido G, Nakagawa Y 1987 J. Magn. Magn. Mater. 70 261
[19] [20] [21] Kanomata T, Kikuchi M, Kaneko T, Kamishima K, Bartashevich M I, Katori H A, Goto T 1997 Solid State Commun. 101 811
[22] [23] Fruchart D, Bertaut E F 1978 J. Phys. Soc. Jpn. 44 781
[24] Yu M H, Lewis L H, Moodenbaugh A R 2006 J. Magn. Magn. Mater. 299 317
[25] [26] Lewis L H, Yoder D, Moodenbaugh A R, Fischer D A, Yu M H 2006 J. Phys.: Condens. Matter 18 1677
[27] [28] [29] Tohei T, Wada H, Kanomata T 2004 J. Magn. Magn. Mater. 272276 e585
[30] [31] Wang B S, Tong P, Sun Y P, Luo X, Zhu X B, Li G, Zhu X D, Zhang S B, Yang Z R, Song W H, Dai J M 2009 Europhys. Lett. 85 47004
[32] [33] Wen Y C, Wang C, Nie M, Sun Y, Chu L H, Dong C 2010 Appl. Phys. Lett. 96 041903
[34] [35] Yan J, Sun Y, Wen Y C, Chu L H, Wu M M, Huang Q Z, Wang C, Lynn J W, Chen Y L 2014 Inorg. Chem. 53 2317
[36] [37] Nie M, Wang C, Wen Y C, Sun Y, Na Y Y, Chu L H, Tang M 2011 Solid State Commun. 151 377
[38] Wang B S, Tong P, Sun Y P, Tang W, Li L J, Zhu X B, Yang Z R, Song W H 2010 J. Magn. Magn. Mater. 322 163
[39] [40] Wang B S, Lu W J, Lin S, Lin J C, Tong P, Zhao B C, Song W H, Sun Y P 2012 J. Magn. Magn. Mater. 324 773
[41] [42] [43] Ruderman M A, Kittel C 1954 Phys. Rev. 96 99
[44] [45] Kasuya T 1956 Prog. Theor. Phys. 16 45
[46] Yosida K 1957 Phys. Rev. 106 893
[47] [48] [49] Phan M H, Yu S C 2007 J. Magn. Magn. Mater. 308 325
[50] Gschneidner Jr K A , Pecharsky V K, Pecharsky A O, Zimm C B 1999 Mater. Sci. Forum 315317 69
[51] -
[1] Zhong W, Au C T, Du Y W 2013 Chin. Phys. B 22 057501
[2] Ge H, Zhang X Q, Ke Y J, Jin J L, Liao Z X, Cheng Z H 2013 Chin. Phys. B 22 057502
[3] [4] [5] Shen B G, Hu F X, Dong Q Y, Sun J R 2013 Chin. Phys. B 22 017502
[6] Geng Y X, Tegus O, Bi L G 2012 Chin. Phys. B 21 037504
[7] [8] Wang Y T, Liu Z D, Yi J, Xue Z Y 2012 Acta Phys. Sin. 61 056102 (in Chinese) [王永田, 刘宗德, 易军, 薛志勇 2012 61 056102]
[9] [10] Zhang L G, Chen J, Zhu B Q, Li Y W, Wang R W, Li Y B, Zhang G H, Li Y 2006 Acta Phys. Sin. 55 5506 (in Chinese) [张立刚, 陈静, 朱伯铨, 李亚伟, 汪汝武, 李云宝, 张国宏, 李钰 2006 55 5506]
[11] [12] [13] Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545
[14] Tohei T, Wada H, Kanomata T 2003 J. Appl. Phys. 94 1800
[15] [16] [17] Yu M H, Lewis L H, Moodenbaugh A R 2003 J. Appl. Phys. 93 10128
[18] Kaneko T, Kanomata T, Miura S, Kido G, Nakagawa Y 1987 J. Magn. Magn. Mater. 70 261
[19] [20] [21] Kanomata T, Kikuchi M, Kaneko T, Kamishima K, Bartashevich M I, Katori H A, Goto T 1997 Solid State Commun. 101 811
[22] [23] Fruchart D, Bertaut E F 1978 J. Phys. Soc. Jpn. 44 781
[24] Yu M H, Lewis L H, Moodenbaugh A R 2006 J. Magn. Magn. Mater. 299 317
[25] [26] Lewis L H, Yoder D, Moodenbaugh A R, Fischer D A, Yu M H 2006 J. Phys.: Condens. Matter 18 1677
[27] [28] [29] Tohei T, Wada H, Kanomata T 2004 J. Magn. Magn. Mater. 272276 e585
[30] [31] Wang B S, Tong P, Sun Y P, Luo X, Zhu X B, Li G, Zhu X D, Zhang S B, Yang Z R, Song W H, Dai J M 2009 Europhys. Lett. 85 47004
[32] [33] Wen Y C, Wang C, Nie M, Sun Y, Chu L H, Dong C 2010 Appl. Phys. Lett. 96 041903
[34] [35] Yan J, Sun Y, Wen Y C, Chu L H, Wu M M, Huang Q Z, Wang C, Lynn J W, Chen Y L 2014 Inorg. Chem. 53 2317
[36] [37] Nie M, Wang C, Wen Y C, Sun Y, Na Y Y, Chu L H, Tang M 2011 Solid State Commun. 151 377
[38] Wang B S, Tong P, Sun Y P, Tang W, Li L J, Zhu X B, Yang Z R, Song W H 2010 J. Magn. Magn. Mater. 322 163
[39] [40] Wang B S, Lu W J, Lin S, Lin J C, Tong P, Zhao B C, Song W H, Sun Y P 2012 J. Magn. Magn. Mater. 324 773
[41] [42] [43] Ruderman M A, Kittel C 1954 Phys. Rev. 96 99
[44] [45] Kasuya T 1956 Prog. Theor. Phys. 16 45
[46] Yosida K 1957 Phys. Rev. 106 893
[47] [48] [49] Phan M H, Yu S C 2007 J. Magn. Magn. Mater. 308 325
[50] Gschneidner Jr K A , Pecharsky V K, Pecharsky A O, Zimm C B 1999 Mater. Sci. Forum 315317 69
[51]
计量
- 文章访问数: 5983
- PDF下载量: 404
- 被引次数: 0