搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co掺杂对Mn3Sn1-xCoxC1.1化合物的磁性质、熵变以及磁卡效应的影响

闫君 孙莹 王聪 史再兴 邓司浩 史可文 卢会清

引用本文:
Citation:

Co掺杂对Mn3Sn1-xCoxC1.1化合物的磁性质、熵变以及磁卡效应的影响

闫君, 孙莹, 王聪, 史再兴, 邓司浩, 史可文, 卢会清

Effects of Co doping on the magnetic properties, entropy change, and magnetocaloric effect in Mn3Sn1-xCoxC1.1compounds

Yan Jun, Sun Ying, Wang Cong, Shi Zai-Xing, Deng Si-Hao, Shi Ke-Wen, Lu Hui-Qing
PDF
导出引用
  • 利用固态反应法制备了Mn3Sn1-xCoxC1.1 (x=0.05,0.1,0.2) 系列化合物,研究了Co掺杂对其磁性质、相变、熵变的影响. 随着Co掺杂量的增加,样品的居里温度由283 K先降到212 K (Mn3Sn0.9Co0.1C1.1) 后又升到332 K (Mn3Sn0.2Co0.8C1.1),相变类型由一级相变逐渐转变为二级相变. 增大Co的掺杂量,Mn3Sn1-xCoxC1.1化合物的熵变峰值逐渐减小,磁熵变温区由9 K展宽到300 K. 当Co掺杂量为0.2时,相对制冷量达到最高,为103 J/kg (磁场强度为1.6 MA/m). 由于室温附近良好的磁致冷效应,该类材料在磁制冷领域可能具有重要的应用前景.
    The Mn3Sn1-xCoxC1.1 compounds are synthesized by a solid-state reaction method. The effects of Co doping on the magnetic properties, phase transition and entropy change are investigated in Mn3Sn1-xCoxC1.1 compounds. The Curie temperature first decreases from 283 K to 212 K (Mn3Sn0.9Co0.1C1.1) with increasing the Co concentration, and then increases to 332 K (Mn3Sn0.2Co0.8C1.1) with further increasing the Co concentration in Mn3Sn1-xCoxC1.1. The first-order transition of Mn3Sn1-xCoxC1.1 gradually changes into the second-order transition, in the mean time, the entropy change decreases and the phase transition region broadens from 9 K to 300 K with increasing the Co content. Both the magnetic entropy change and broadening the transition temperature span can influence the relative cooling power R. Finally we obtain the large R=103 J/kg (H=1.6 MA/m) in Mn3Sn0.8Co0.2C1.1, which could be used as the room-temperature magnetic refrigerant materials.
    • 基金项目: 国家自然科学基金(批准号:91122026,51172012)和教育部博士点基金(批准号:20111102110026)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91122026, 51172012) and the Doctoral Foundation of Ministry of Education, China (Grant No. 20111102110026).
    [1]

    Zhong W, Au C T, Du Y W 2013 Chin. Phys. B 22 057501

    [2]

    Ge H, Zhang X Q, Ke Y J, Jin J L, Liao Z X, Cheng Z H 2013 Chin. Phys. B 22 057502

    [3]
    [4]
    [5]

    Shen B G, Hu F X, Dong Q Y, Sun J R 2013 Chin. Phys. B 22 017502

    [6]

    Geng Y X, Tegus O, Bi L G 2012 Chin. Phys. B 21 037504

    [7]
    [8]

    Wang Y T, Liu Z D, Yi J, Xue Z Y 2012 Acta Phys. Sin. 61 056102 (in Chinese) [王永田, 刘宗德, 易军, 薛志勇 2012 61 056102]

    [9]
    [10]

    Zhang L G, Chen J, Zhu B Q, Li Y W, Wang R W, Li Y B, Zhang G H, Li Y 2006 Acta Phys. Sin. 55 5506 (in Chinese) [张立刚, 陈静, 朱伯铨, 李亚伟, 汪汝武, 李云宝, 张国宏, 李钰 2006 55 5506]

    [11]
    [12]
    [13]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545

    [14]

    Tohei T, Wada H, Kanomata T 2003 J. Appl. Phys. 94 1800

    [15]
    [16]
    [17]

    Yu M H, Lewis L H, Moodenbaugh A R 2003 J. Appl. Phys. 93 10128

    [18]

    Kaneko T, Kanomata T, Miura S, Kido G, Nakagawa Y 1987 J. Magn. Magn. Mater. 70 261

    [19]
    [20]
    [21]

    Kanomata T, Kikuchi M, Kaneko T, Kamishima K, Bartashevich M I, Katori H A, Goto T 1997 Solid State Commun. 101 811

    [22]
    [23]

    Fruchart D, Bertaut E F 1978 J. Phys. Soc. Jpn. 44 781

    [24]

    Yu M H, Lewis L H, Moodenbaugh A R 2006 J. Magn. Magn. Mater. 299 317

    [25]
    [26]

    Lewis L H, Yoder D, Moodenbaugh A R, Fischer D A, Yu M H 2006 J. Phys.: Condens. Matter 18 1677

    [27]
    [28]
    [29]

    Tohei T, Wada H, Kanomata T 2004 J. Magn. Magn. Mater. 272276 e585

    [30]
    [31]

    Wang B S, Tong P, Sun Y P, Luo X, Zhu X B, Li G, Zhu X D, Zhang S B, Yang Z R, Song W H, Dai J M 2009 Europhys. Lett. 85 47004

    [32]
    [33]

    Wen Y C, Wang C, Nie M, Sun Y, Chu L H, Dong C 2010 Appl. Phys. Lett. 96 041903

    [34]
    [35]

    Yan J, Sun Y, Wen Y C, Chu L H, Wu M M, Huang Q Z, Wang C, Lynn J W, Chen Y L 2014 Inorg. Chem. 53 2317

    [36]
    [37]

    Nie M, Wang C, Wen Y C, Sun Y, Na Y Y, Chu L H, Tang M 2011 Solid State Commun. 151 377

    [38]

    Wang B S, Tong P, Sun Y P, Tang W, Li L J, Zhu X B, Yang Z R, Song W H 2010 J. Magn. Magn. Mater. 322 163

    [39]
    [40]

    Wang B S, Lu W J, Lin S, Lin J C, Tong P, Zhao B C, Song W H, Sun Y P 2012 J. Magn. Magn. Mater. 324 773

    [41]
    [42]
    [43]

    Ruderman M A, Kittel C 1954 Phys. Rev. 96 99

    [44]
    [45]

    Kasuya T 1956 Prog. Theor. Phys. 16 45

    [46]

    Yosida K 1957 Phys. Rev. 106 893

    [47]
    [48]
    [49]

    Phan M H, Yu S C 2007 J. Magn. Magn. Mater. 308 325

    [50]

    Gschneidner Jr K A , Pecharsky V K, Pecharsky A O, Zimm C B 1999 Mater. Sci. Forum 315317 69

    [51]
  • [1]

    Zhong W, Au C T, Du Y W 2013 Chin. Phys. B 22 057501

    [2]

    Ge H, Zhang X Q, Ke Y J, Jin J L, Liao Z X, Cheng Z H 2013 Chin. Phys. B 22 057502

    [3]
    [4]
    [5]

    Shen B G, Hu F X, Dong Q Y, Sun J R 2013 Chin. Phys. B 22 017502

    [6]

    Geng Y X, Tegus O, Bi L G 2012 Chin. Phys. B 21 037504

    [7]
    [8]

    Wang Y T, Liu Z D, Yi J, Xue Z Y 2012 Acta Phys. Sin. 61 056102 (in Chinese) [王永田, 刘宗德, 易军, 薛志勇 2012 61 056102]

    [9]
    [10]

    Zhang L G, Chen J, Zhu B Q, Li Y W, Wang R W, Li Y B, Zhang G H, Li Y 2006 Acta Phys. Sin. 55 5506 (in Chinese) [张立刚, 陈静, 朱伯铨, 李亚伟, 汪汝武, 李云宝, 张国宏, 李钰 2006 55 5506]

    [11]
    [12]
    [13]

    Shen B G, Sun J R, Hu F X, Zhang H W, Cheng Z H 2009 Adv. Mater. 21 4545

    [14]

    Tohei T, Wada H, Kanomata T 2003 J. Appl. Phys. 94 1800

    [15]
    [16]
    [17]

    Yu M H, Lewis L H, Moodenbaugh A R 2003 J. Appl. Phys. 93 10128

    [18]

    Kaneko T, Kanomata T, Miura S, Kido G, Nakagawa Y 1987 J. Magn. Magn. Mater. 70 261

    [19]
    [20]
    [21]

    Kanomata T, Kikuchi M, Kaneko T, Kamishima K, Bartashevich M I, Katori H A, Goto T 1997 Solid State Commun. 101 811

    [22]
    [23]

    Fruchart D, Bertaut E F 1978 J. Phys. Soc. Jpn. 44 781

    [24]

    Yu M H, Lewis L H, Moodenbaugh A R 2006 J. Magn. Magn. Mater. 299 317

    [25]
    [26]

    Lewis L H, Yoder D, Moodenbaugh A R, Fischer D A, Yu M H 2006 J. Phys.: Condens. Matter 18 1677

    [27]
    [28]
    [29]

    Tohei T, Wada H, Kanomata T 2004 J. Magn. Magn. Mater. 272276 e585

    [30]
    [31]

    Wang B S, Tong P, Sun Y P, Luo X, Zhu X B, Li G, Zhu X D, Zhang S B, Yang Z R, Song W H, Dai J M 2009 Europhys. Lett. 85 47004

    [32]
    [33]

    Wen Y C, Wang C, Nie M, Sun Y, Chu L H, Dong C 2010 Appl. Phys. Lett. 96 041903

    [34]
    [35]

    Yan J, Sun Y, Wen Y C, Chu L H, Wu M M, Huang Q Z, Wang C, Lynn J W, Chen Y L 2014 Inorg. Chem. 53 2317

    [36]
    [37]

    Nie M, Wang C, Wen Y C, Sun Y, Na Y Y, Chu L H, Tang M 2011 Solid State Commun. 151 377

    [38]

    Wang B S, Tong P, Sun Y P, Tang W, Li L J, Zhu X B, Yang Z R, Song W H 2010 J. Magn. Magn. Mater. 322 163

    [39]
    [40]

    Wang B S, Lu W J, Lin S, Lin J C, Tong P, Zhao B C, Song W H, Sun Y P 2012 J. Magn. Magn. Mater. 324 773

    [41]
    [42]
    [43]

    Ruderman M A, Kittel C 1954 Phys. Rev. 96 99

    [44]
    [45]

    Kasuya T 1956 Prog. Theor. Phys. 16 45

    [46]

    Yosida K 1957 Phys. Rev. 106 893

    [47]
    [48]
    [49]

    Phan M H, Yu S C 2007 J. Magn. Magn. Mater. 308 325

    [50]

    Gschneidner Jr K A , Pecharsky V K, Pecharsky A O, Zimm C B 1999 Mater. Sci. Forum 315317 69

    [51]
  • [1] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理.  , 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [2] 刘妮, 黄珊, 李军奇, 梁九卿. 有限温度下腔光机械系统中N个二能级原子的相变和热力学性质.  , 2019, 68(19): 193701. doi: 10.7498/aps.68.20190347
    [3] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应.  , 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [4] 张元磊, 李哲, 徐坤, 敬超. 哈斯勒合金Ni-Fe-Mn-In的马氏体相变与磁特性研究.  , 2015, 64(6): 066402. doi: 10.7498/aps.64.066402
    [5] 周大雨, 徐进. Si掺杂HfO2薄膜的铁电和反铁电性质.  , 2014, 63(11): 117703. doi: 10.7498/aps.63.117703
    [6] 吴建邦, 周民杰, 王雪敏, 王瑜英, 熊政伟, 程新路, Marie-José Casanove, Christophe Gatel, 吴卫东. 纳米FePt颗粒:MgO多层复合薄膜的外延生长、微观结构与磁性研究.  , 2014, 63(16): 166801. doi: 10.7498/aps.63.166801
    [7] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质.  , 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [8] 李炎, 唐刚, 宋丽建, 寻之朋, 夏辉, 郝大鹏. Erds Rnyi随机网络上爆炸渗流模型相变性质的数值模拟研究.  , 2013, 62(4): 046401. doi: 10.7498/aps.62.046401
    [9] 李建华, 崔元顺, 曾祥华, 陈贵宾. ZnS结构相变、电子结构和光学性质的研究.  , 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [10] 王参军. 随机基因选择模型中的延迟效应.  , 2012, 61(5): 050501. doi: 10.7498/aps.61.050501
    [11] 袁焕丽, 袁保合, 李芳, 梁二军. ZrV2-xPxO7固溶体的相变与热膨胀性质的研究.  , 2012, 61(22): 226502. doi: 10.7498/aps.61.226502
    [12] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究.  , 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [13] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究.  , 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [14] 李永宏, 刘福生, 程小理, 张明建, 薛学东. 冲击加载条件下融石英对水的凝固相变的诱导效应.  , 2011, 60(12): 126202. doi: 10.7498/aps.60.126202
    [15] 王海燕, 崔红保, 历长云, 李旭升, 王狂飞. AlAs相变及热动力学性质的第一性原理研究.  , 2009, 58(8): 5598-5603. doi: 10.7498/aps.58.5598
    [16] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究.  , 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [17] 李 卫, 冯良桓, 武莉莉, 蔡亚平, 张静全, 郑家贵, 蔡 伟, 黎 兵, 雷 智, 张冬敏. CdSxTe1-x多晶薄膜的制备与性质研究.  , 2005, 54(4): 1879-1884. doi: 10.7498/aps.54.1879
    [18] 汪金芝, 方庆清. 纳米Zn0.6CoxFe2.4-xO4晶粒的结构相变与磁性研究.  , 2004, 53(9): 3186-3190. doi: 10.7498/aps.53.3186
    [19] 王文虎, 李世亮, 陈兆甲, 闻海虎, 熊玉峰. Bi2Sr2CaCu2O8单晶中的反常尖锋效应.  , 2001, 50(12): 2466-2470. doi: 10.7498/aps.50.2466
    [20] 王锦辉, 朱浩, 韩红梅, 倪刚, 钟伟, 都有为. 双钙钛矿Sr2CrWO6的磁性与输运性质研究.  , 2001, 50(3): 540-543. doi: 10.7498/aps.50.540
计量
  • 文章访问数:  5983
  • PDF下载量:  404
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-25
  • 修回日期:  2014-04-18
  • 刊出日期:  2014-08-05

/

返回文章
返回
Baidu
map