-
应用双模晶体相场模型计算二维相图,并模拟了在熔点附近预变形和保 温温度对六角相晶界演化以及六角相/正方相相变的影响. 研究发现:在相变初期,当预变形为零、保温温度离熔点很近时在晶界发生缺陷诱发预熔;增大预变形,变形与缺陷的交互作用在熔点附近诱发预熔;随着预变形的进一步增大,变形在畸变处同时诱发液相和正方相,且预变形越大、保温温度越接近熔点,液相生长越明显,反之正方相生长明显. 持续保温使得畸变能释放,晶粒最终完全转变为平衡正方相. 模拟结果表明:预变形六角相在熔点附近保温时,由于晶界固有缺陷和预变形双重作用使得原子无序度增加,从而在晶界或其他缺陷处产生液相,待能量释放后晶粒再转变成平衡正方相,进而延缓了六角相/正方相相变时间.The two-mode phase field crystal (PFC) method is used to calculate the phase diagram. And in this paper it is used to simulate the effects of predeformation degree and isothermal temperature on the hexagonal grain boundary evolution and on the hexagonal/square phase transition. Results show that when there is no predeformation in the initial phase, the grain boundary defect causes the pre-melting around the melting point; predeformation increases and the interaction between deformation and defects induces the pre-melting around the melting point; and the predeformation further increases, deformation induces liquid phase and square phase simultaneously at the distortion place. The bigger the predeformation and the closer to melting point the maintained temperature, the more obvious the growth of liquid phase is; on the contrary, the square phase grows obviously. The distortion energy is released with time and the phase of grain finally becomes square phase. It can be concluded that keeping the hexagonal phase isothermal near the melting temperature, the liquid phase appears at the grain boundary or at the other defects because the predeformation leads to the increase of atom activity, thus increasing atom disorder degree. Then with the release of distortion energy, the grain phase finally transforms into an equilibrium square phase. In this way the hexagonal/square transition time is extended.
-
Keywords:
- two-mode phase field crystal method /
- predeformation /
- pre-melting /
- phase transition
[1] Elder K R, Provatas N, Berry J, Stefanovic P 2007 Phys. Rev. B 75 064107
[2] Elder K R, Katakowski M, Haataja M 2001 Phys. Rev. Lett. 88 245701
[3] Zhang Q, Wang J C, Zhang Y C, Yang G C 2011 Acta Phys. Sin. 60 088104 (in Chinese) [张琪, 王锦程, 张亚从, 杨根仓 2011 60 088104]
[4] Jaatinen A, Ala-Nissila T 2010 Phys. Rev. E 82 061602
[5] Jaatinen A, Achim C V, Elder K R, Ala-Nissila T 2009 Phys. Rev. E 80 031602
[6] Wu K A, Adland A, Karma A 2010 Phys. Rev. E 81 061601
[7] Greenwood M, Provatas N, Rottler J 2010 Phys. Rev. Lett. 105 045702
[8] Greenwood M, Rottler J, Provatas N 2011 Phys. Rev. E 83 031601
[9] Elder K R, Huang Z F, Provatas N 2010 Phys. Rev. E 81 011602
[10] Goldenfeld N, Athreya P, Dantzig J A 2005 Phys. Rev. E 72 020601
[11] Gao Y J, Luo Z R, Huang C G 2013 Acta Phy. Sin. 62 050507 (in Chinese) [高英俊, 罗志荣, 黄创高 2013 62 050507]
[12] Liu Z J, Cheng X L, Yang X D, Zhang H, Cai L C 2006 Chin. Phys. 15 224
[13] Yang T, Chen Z, Zhang J, Dong W P, Wu L 2012 Chin. Phys. Lett. 29 078103
[14] Gao Y J, Luo Z R, Zhang S Y, Huang C G 2010 Acta Metall. Sin. 46 1473 (in Chinese) [高英俊, 罗志荣, 张少义, 黄创高 2010 金属学报 46 1473]
[15] Jaatinen A, Ala-Nissila T 2010 J. Phys. : Condens. Matter 22 205402
[16] Chen L Q, Shen J 1998 Comput. Phys. Commun. 108 147
[17] Hirouchi T, Takaki T, Tomita Y 2009 Comput. Mater. Sci. 44 1192
[18] Lu Y L, Mu H, Hou H X, Chen Z 2013 Acta Metall. Sin. 49 358 (in Chinese) [卢艳丽, 牧虹, 侯华欣, 陈铮 2013 金属学报 49 358]
-
[1] Elder K R, Provatas N, Berry J, Stefanovic P 2007 Phys. Rev. B 75 064107
[2] Elder K R, Katakowski M, Haataja M 2001 Phys. Rev. Lett. 88 245701
[3] Zhang Q, Wang J C, Zhang Y C, Yang G C 2011 Acta Phys. Sin. 60 088104 (in Chinese) [张琪, 王锦程, 张亚从, 杨根仓 2011 60 088104]
[4] Jaatinen A, Ala-Nissila T 2010 Phys. Rev. E 82 061602
[5] Jaatinen A, Achim C V, Elder K R, Ala-Nissila T 2009 Phys. Rev. E 80 031602
[6] Wu K A, Adland A, Karma A 2010 Phys. Rev. E 81 061601
[7] Greenwood M, Provatas N, Rottler J 2010 Phys. Rev. Lett. 105 045702
[8] Greenwood M, Rottler J, Provatas N 2011 Phys. Rev. E 83 031601
[9] Elder K R, Huang Z F, Provatas N 2010 Phys. Rev. E 81 011602
[10] Goldenfeld N, Athreya P, Dantzig J A 2005 Phys. Rev. E 72 020601
[11] Gao Y J, Luo Z R, Huang C G 2013 Acta Phy. Sin. 62 050507 (in Chinese) [高英俊, 罗志荣, 黄创高 2013 62 050507]
[12] Liu Z J, Cheng X L, Yang X D, Zhang H, Cai L C 2006 Chin. Phys. 15 224
[13] Yang T, Chen Z, Zhang J, Dong W P, Wu L 2012 Chin. Phys. Lett. 29 078103
[14] Gao Y J, Luo Z R, Zhang S Y, Huang C G 2010 Acta Metall. Sin. 46 1473 (in Chinese) [高英俊, 罗志荣, 张少义, 黄创高 2010 金属学报 46 1473]
[15] Jaatinen A, Ala-Nissila T 2010 J. Phys. : Condens. Matter 22 205402
[16] Chen L Q, Shen J 1998 Comput. Phys. Commun. 108 147
[17] Hirouchi T, Takaki T, Tomita Y 2009 Comput. Mater. Sci. 44 1192
[18] Lu Y L, Mu H, Hou H X, Chen Z 2013 Acta Metall. Sin. 49 358 (in Chinese) [卢艳丽, 牧虹, 侯华欣, 陈铮 2013 金属学报 49 358]
计量
- 文章访问数: 6575
- PDF下载量: 400
- 被引次数: 0