搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶体相场法研究预变形对熔点附近六角相/正方相相变的影响

员江娟 陈铮 李尚洁 张静

引用本文:
Citation:

晶体相场法研究预变形对熔点附近六角相/正方相相变的影响

员江娟, 陈铮, 李尚洁, 张静

Effect of predeformation on the transition from hexagonal phase to square phase near the melting point using phase field crystal method

Yun Jiang-Juan, Chen Zheng, Li Shang-Jie, Zhang Jing
PDF
导出引用
  • 应用双模晶体相场模型计算二维相图,并模拟了在熔点附近预变形和保 温温度对六角相晶界演化以及六角相/正方相相变的影响. 研究发现:在相变初期,当预变形为零、保温温度离熔点很近时在晶界发生缺陷诱发预熔;增大预变形,变形与缺陷的交互作用在熔点附近诱发预熔;随着预变形的进一步增大,变形在畸变处同时诱发液相和正方相,且预变形越大、保温温度越接近熔点,液相生长越明显,反之正方相生长明显. 持续保温使得畸变能释放,晶粒最终完全转变为平衡正方相. 模拟结果表明:预变形六角相在熔点附近保温时,由于晶界固有缺陷和预变形双重作用使得原子无序度增加,从而在晶界或其他缺陷处产生液相,待能量释放后晶粒再转变成平衡正方相,进而延缓了六角相/正方相相变时间.
    The two-mode phase field crystal (PFC) method is used to calculate the phase diagram. And in this paper it is used to simulate the effects of predeformation degree and isothermal temperature on the hexagonal grain boundary evolution and on the hexagonal/square phase transition. Results show that when there is no predeformation in the initial phase, the grain boundary defect causes the pre-melting around the melting point; predeformation increases and the interaction between deformation and defects induces the pre-melting around the melting point; and the predeformation further increases, deformation induces liquid phase and square phase simultaneously at the distortion place. The bigger the predeformation and the closer to melting point the maintained temperature, the more obvious the growth of liquid phase is; on the contrary, the square phase grows obviously. The distortion energy is released with time and the phase of grain finally becomes square phase. It can be concluded that keeping the hexagonal phase isothermal near the melting temperature, the liquid phase appears at the grain boundary or at the other defects because the predeformation leads to the increase of atom activity, thus increasing atom disorder degree. Then with the release of distortion energy, the grain phase finally transforms into an equilibrium square phase. In this way the hexagonal/square transition time is extended.
    • 基金项目: 国家自然科学基金(批准号:51274167,51174168)和高等学校博士学科点专项科研基金(批准号:NDYD0008)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51274167, 51174168) and the Specialized Research Foundation for the Doctoral Program of Institution of Higher Education of China (Grant No. NDYD0008).
    [1]

    Elder K R, Provatas N, Berry J, Stefanovic P 2007 Phys. Rev. B 75 064107

    [2]

    Elder K R, Katakowski M, Haataja M 2001 Phys. Rev. Lett. 88 245701

    [3]

    Zhang Q, Wang J C, Zhang Y C, Yang G C 2011 Acta Phys. Sin. 60 088104 (in Chinese) [张琪, 王锦程, 张亚从, 杨根仓 2011 60 088104]

    [4]

    Jaatinen A, Ala-Nissila T 2010 Phys. Rev. E 82 061602

    [5]

    Jaatinen A, Achim C V, Elder K R, Ala-Nissila T 2009 Phys. Rev. E 80 031602

    [6]

    Wu K A, Adland A, Karma A 2010 Phys. Rev. E 81 061601

    [7]

    Greenwood M, Provatas N, Rottler J 2010 Phys. Rev. Lett. 105 045702

    [8]

    Greenwood M, Rottler J, Provatas N 2011 Phys. Rev. E 83 031601

    [9]

    Elder K R, Huang Z F, Provatas N 2010 Phys. Rev. E 81 011602

    [10]

    Goldenfeld N, Athreya P, Dantzig J A 2005 Phys. Rev. E 72 020601

    [11]

    Gao Y J, Luo Z R, Huang C G 2013 Acta Phy. Sin. 62 050507 (in Chinese) [高英俊, 罗志荣, 黄创高 2013 62 050507]

    [12]

    Liu Z J, Cheng X L, Yang X D, Zhang H, Cai L C 2006 Chin. Phys. 15 224

    [13]

    Yang T, Chen Z, Zhang J, Dong W P, Wu L 2012 Chin. Phys. Lett. 29 078103

    [14]

    Gao Y J, Luo Z R, Zhang S Y, Huang C G 2010 Acta Metall. Sin. 46 1473 (in Chinese) [高英俊, 罗志荣, 张少义, 黄创高 2010 金属学报 46 1473]

    [15]

    Jaatinen A, Ala-Nissila T 2010 J. Phys. : Condens. Matter 22 205402

    [16]

    Chen L Q, Shen J 1998 Comput. Phys. Commun. 108 147

    [17]

    Hirouchi T, Takaki T, Tomita Y 2009 Comput. Mater. Sci. 44 1192

    [18]

    Lu Y L, Mu H, Hou H X, Chen Z 2013 Acta Metall. Sin. 49 358 (in Chinese) [卢艳丽, 牧虹, 侯华欣, 陈铮 2013 金属学报 49 358]

  • [1]

    Elder K R, Provatas N, Berry J, Stefanovic P 2007 Phys. Rev. B 75 064107

    [2]

    Elder K R, Katakowski M, Haataja M 2001 Phys. Rev. Lett. 88 245701

    [3]

    Zhang Q, Wang J C, Zhang Y C, Yang G C 2011 Acta Phys. Sin. 60 088104 (in Chinese) [张琪, 王锦程, 张亚从, 杨根仓 2011 60 088104]

    [4]

    Jaatinen A, Ala-Nissila T 2010 Phys. Rev. E 82 061602

    [5]

    Jaatinen A, Achim C V, Elder K R, Ala-Nissila T 2009 Phys. Rev. E 80 031602

    [6]

    Wu K A, Adland A, Karma A 2010 Phys. Rev. E 81 061601

    [7]

    Greenwood M, Provatas N, Rottler J 2010 Phys. Rev. Lett. 105 045702

    [8]

    Greenwood M, Rottler J, Provatas N 2011 Phys. Rev. E 83 031601

    [9]

    Elder K R, Huang Z F, Provatas N 2010 Phys. Rev. E 81 011602

    [10]

    Goldenfeld N, Athreya P, Dantzig J A 2005 Phys. Rev. E 72 020601

    [11]

    Gao Y J, Luo Z R, Huang C G 2013 Acta Phy. Sin. 62 050507 (in Chinese) [高英俊, 罗志荣, 黄创高 2013 62 050507]

    [12]

    Liu Z J, Cheng X L, Yang X D, Zhang H, Cai L C 2006 Chin. Phys. 15 224

    [13]

    Yang T, Chen Z, Zhang J, Dong W P, Wu L 2012 Chin. Phys. Lett. 29 078103

    [14]

    Gao Y J, Luo Z R, Zhang S Y, Huang C G 2010 Acta Metall. Sin. 46 1473 (in Chinese) [高英俊, 罗志荣, 张少义, 黄创高 2010 金属学报 46 1473]

    [15]

    Jaatinen A, Ala-Nissila T 2010 J. Phys. : Condens. Matter 22 205402

    [16]

    Chen L Q, Shen J 1998 Comput. Phys. Commun. 108 147

    [17]

    Hirouchi T, Takaki T, Tomita Y 2009 Comput. Mater. Sci. 44 1192

    [18]

    Lu Y L, Mu H, Hou H X, Chen Z 2013 Acta Metall. Sin. 49 358 (in Chinese) [卢艳丽, 牧虹, 侯华欣, 陈铮 2013 金属学报 49 358]

  • [1] 贺苏娟, 邹为. 平均场反馈下全局耦合Stuart-Landau极限环系统的可解集体动力学.  , 2023, 72(20): 200502. doi: 10.7498/aps.72.20230842
    [2] 郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华. 金属基复合材料原位反应相场模型.  , 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [3] 蔡宗楷, 徐灿, 郑志刚. 高阶耦合相振子系统的同步动力学.  , 2021, 70(22): 220501. doi: 10.7498/aps.70.20211206
    [4] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟.  , 2021, 70(13): 136101. doi: 10.7498/aps.70.20201861
    [5] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应.  , 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [6] 李鹤龄, 王娟娟, 杨斌, 沈宏君. 由N-E-V分布及赝势法研究弱磁场中弱相互作用费米子气体的热力学性质.  , 2015, 64(4): 040501. doi: 10.7498/aps.64.040501
    [7] 张力, 陈朗. 固相硝基甲烷相变的第一性原理计算.  , 2014, 63(9): 098105. doi: 10.7498/aps.63.098105
    [8] 邢雪, 王小飞, 张庆礼, 孙贵花, 刘文鹏, 孙敦陆, 殷绍唐. LuTaO4相变及结构.  , 2014, 63(24): 248107. doi: 10.7498/aps.63.248107
    [9] 员江娟, 陈铮, 李尚洁. 双模晶体相场研究形变诱导的多级微结构演化.  , 2014, 63(9): 098106. doi: 10.7498/aps.63.098106
    [10] 孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang MY. 原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理.  , 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
    [11] 张晋鲁, 李玉强, 赵兴宇, 黄以能. 用Weiss分子场理论对有外电场时铁电体系相变特征的研究.  , 2012, 61(14): 140501. doi: 10.7498/aps.61.140501
    [12] 宋婷婷, 何捷, 林理彬, 陈军. 氧化钒晶体的半导体至金属相变的理论研究.  , 2010, 59(9): 6480-6486. doi: 10.7498/aps.59.6480
    [13] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究.  , 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [14] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用.  , 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [15] 徐文武, 宋晓艳, 李尔东, 魏君, 李凌梅. 纳米尺度下Sm-Co合金体系中相组成与相稳定性的研究.  , 2009, 58(5): 3280-3286. doi: 10.7498/aps.58.3280
    [16] 邵建立, 王 裴, 秦承森, 周洪强. 冲击加载下孔洞诱导相变形核分析.  , 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究.  , 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, L. Gerward, 蒋建中. 高压下纳米锗的状态方程与相变.  , 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [19] 刘 红, 王 慧. 双轴性向列相液晶的相变理论.  , 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [20] 刘 红. 丝状相液晶由表面相互作用产生的相变.  , 2000, 49(7): 1321-1326. doi: 10.7498/aps.49.1321
计量
  • 文章访问数:  6575
  • PDF下载量:  400
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-15
  • 修回日期:  2014-04-29
  • 刊出日期:  2014-08-05

/

返回文章
返回
Baidu
map