搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双模晶体相场研究形变诱导的多级微结构演化

员江娟 陈铮 李尚洁

引用本文:
Citation:

双模晶体相场研究形变诱导的多级微结构演化

员江娟, 陈铮, 李尚洁

Multistage microstructural evolution caused by deformation in two-mode phase field crystals

Yun Jiang-Juan, Chen Zheng, Li Shang-Jie
PDF
导出引用
  • 本文采用双模晶体相场模型,计算了双模二维相图;模拟了形变诱导六角相向正方相转变过程的多级微结构演化,详细分析了位相差、形变方向对位错、晶界、晶体结构、新相形貌的影响规律. 模拟结果表明:形变方向影响正方相晶核的形核位置和生长方向,拉伸时正方相优先在变形带上形核,垂直于形变方向长大,而压缩时正方相直接在位错和晶界的能量较高处形核,平行于形变方向长大;位相差对形变诱发晶界甄没过程有显著影响,体现在能量峰上为,小位相差晶界位错的攀滑移和甄没形成一个能量峰,大位相差晶界位错攀滑移和甄没因分阶段完成而不出现明显的能量峰;形变诱导相变过程中各种因素相互作用复杂,是相变与动态再结晶的复合转变.
    The two-mode phase-field-crystal (PFC) method is used to calculate two-dimensional phase diagram and to simulate the process of multistage microstructural evolution in the transformation from hexagonal phase to square phase, which is induced by deformation. And the effect of misorientation and deformation on dislocation, grain boundary, crystal structure and morphology of the new phase is carefully analyzed. Simulation results show that both the nucleation site and growth direction of the square phase are affected by the direction of deformation. Under a tensile deformation, the nucleation of the square phase occurs preferentially in the deformation zone; while under compression deformation, the nucleation of the square phase may begin at dislocations and grain boundary. Moreover, the new phase grows towards the direction along which the degree of atomic mismatch decreases, i.e. the vertical direction of tensile deformation and the parallel direction of compressive deformation. Besides, the free energy varies with misorientation. In small misorientation, the dislocation climbing, slipping and annihilating will result in an energy peak; while in a big misorientation, the dislocation annihilates in several stages and thus offsetting the energy caused by deformation. Furthermore, the process of phase transformation is complex: It is not a pure phase transformation but a composite change of phase transformation and dynamic recrystallization.
    • 基金项目: 国家自然科学基金(批准号:51274167,51174168)和高等学校博士点专项科研基金(批准号:NDYD0008)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51274167, 51174168), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. NDYD0008).
    [1]

    Elder K R, Provatas N, Berry J, Stefanovic P 2007 Phys. Rev. B 75 064107

    [2]

    Elder K R, Katakowski M, Haataja M 2001 Phys. Rev. Lett. 88 245701

    [3]

    Jaatinen A, Ala-Nissila T 2010 Phys. Rev. E 82 061602

    [4]

    Jaatinen A, Achim C V, Elder K R 2009 Phys. Rev. E 80 031602

    [5]

    Wu K A, Adland A, Karma A 2010 Phys. Rev. E 81 061601

    [6]

    Greenwood M, Provatas N, Rottler J 2010 Phys. Rev. lett. 105 045702

    [7]

    Greenwood M, Rottler J, Provatas N 2011 Phys. Rev. E 83 031601

    [8]

    Elder K R, Huang Z F, Provatas N 2010 Phys. Rev. E 81 011602

    [9]

    Goldenfeld N, Athreya P, Dantzig J A 2005 Phys. Rev. E 72 020601

    [10]

    Gao Y J, Luo Z R, Huang C G 2013 Acta Phy. Sin. 62 50507 (in Chinese)[高英俊, 罗志荣, 黄创高 2013 62 50507]

    [11]

    Yang T, Chen Z, Zhang J, Dong W P, Wu L 2012 Chin. Phys. Lett. 29 078103

    [12]

    Gao Y J, Luo Z R, Zhang S Y, Huang C G 2010 Acta Metall. Sin. 46 1473 (in Chinese)[高英俊, 罗志荣, 张少义, 黄创高 2010 金属学报 46 1473]

    [13]

    Jaatinen A, Ala-Nissila T 2010 J. Phys: Condens. Matter. 22 205402

    [14]

    Chen L Q, Shen J 1998 Comput Phys. Commun. 108 147

    [15]

    Hirouchi T, Takaki T, Tomita Y 2009 Comput. Mater. Sci. 44 1192

    [16]

    Song R N, Zhu W, Liu E K 2012 Acta Phy. Sin. 61 27501 (in Chinese) [宋瑞宁, 朱伟, 刘恩克 2012 61 27501]

    [17]

    Yang T, Chen Z, Dong W P 2011 Acta Metall. Sin. 47 1301 (in Chinese)[杨涛, 陈铮, 董卫平 2011 金属学报 47 1301]

    [18]

    L W, Chen J F, He Q Y, Pan Z L, Wang T 2011 Chin. Phys. B 20 026101

  • [1]

    Elder K R, Provatas N, Berry J, Stefanovic P 2007 Phys. Rev. B 75 064107

    [2]

    Elder K R, Katakowski M, Haataja M 2001 Phys. Rev. Lett. 88 245701

    [3]

    Jaatinen A, Ala-Nissila T 2010 Phys. Rev. E 82 061602

    [4]

    Jaatinen A, Achim C V, Elder K R 2009 Phys. Rev. E 80 031602

    [5]

    Wu K A, Adland A, Karma A 2010 Phys. Rev. E 81 061601

    [6]

    Greenwood M, Provatas N, Rottler J 2010 Phys. Rev. lett. 105 045702

    [7]

    Greenwood M, Rottler J, Provatas N 2011 Phys. Rev. E 83 031601

    [8]

    Elder K R, Huang Z F, Provatas N 2010 Phys. Rev. E 81 011602

    [9]

    Goldenfeld N, Athreya P, Dantzig J A 2005 Phys. Rev. E 72 020601

    [10]

    Gao Y J, Luo Z R, Huang C G 2013 Acta Phy. Sin. 62 50507 (in Chinese)[高英俊, 罗志荣, 黄创高 2013 62 50507]

    [11]

    Yang T, Chen Z, Zhang J, Dong W P, Wu L 2012 Chin. Phys. Lett. 29 078103

    [12]

    Gao Y J, Luo Z R, Zhang S Y, Huang C G 2010 Acta Metall. Sin. 46 1473 (in Chinese)[高英俊, 罗志荣, 张少义, 黄创高 2010 金属学报 46 1473]

    [13]

    Jaatinen A, Ala-Nissila T 2010 J. Phys: Condens. Matter. 22 205402

    [14]

    Chen L Q, Shen J 1998 Comput Phys. Commun. 108 147

    [15]

    Hirouchi T, Takaki T, Tomita Y 2009 Comput. Mater. Sci. 44 1192

    [16]

    Song R N, Zhu W, Liu E K 2012 Acta Phy. Sin. 61 27501 (in Chinese) [宋瑞宁, 朱伟, 刘恩克 2012 61 27501]

    [17]

    Yang T, Chen Z, Dong W P 2011 Acta Metall. Sin. 47 1301 (in Chinese)[杨涛, 陈铮, 董卫平 2011 金属学报 47 1301]

    [18]

    L W, Chen J F, He Q Y, Pan Z L, Wang T 2011 Chin. Phys. B 20 026101

  • [1] 贺苏娟, 邹为. 平均场反馈下全局耦合Stuart-Landau极限环系统的可解集体动力学.  , 2023, 72(20): 200502. doi: 10.7498/aps.72.20230842
    [2] 郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华. 金属基复合材料原位反应相场模型.  , 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [3] 蔡宗楷, 徐灿, 郑志刚. 高阶耦合相振子系统的同步动力学.  , 2021, 70(22): 220501. doi: 10.7498/aps.70.20211206
    [4] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟.  , 2021, 70(13): 136101. doi: 10.7498/aps.70.20201861
    [5] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制.  , 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [6] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应.  , 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [7] 李鹤龄, 王娟娟, 杨斌, 沈宏君. 由N-E-V分布及赝势法研究弱磁场中弱相互作用费米子气体的热力学性质.  , 2015, 64(4): 040501. doi: 10.7498/aps.64.040501
    [8] 张力, 陈朗. 固相硝基甲烷相变的第一性原理计算.  , 2014, 63(9): 098105. doi: 10.7498/aps.63.098105
    [9] 邢雪, 王小飞, 张庆礼, 孙贵花, 刘文鹏, 孙敦陆, 殷绍唐. LuTaO4相变及结构.  , 2014, 63(24): 248107. doi: 10.7498/aps.63.248107
    [10] 员江娟, 陈铮, 李尚洁, 张静. 晶体相场法研究预变形对熔点附近六角相/正方相相变的影响.  , 2014, 63(16): 166401. doi: 10.7498/aps.63.166401
    [11] 高英俊, 罗志荣, 黄创高, 卢强华, 林葵. 晶体相场方法研究二维六角相向正方相结构转变.  , 2013, 62(5): 050507. doi: 10.7498/aps.62.050507
    [12] 张晋鲁, 李玉强, 赵兴宇, 黄以能. 用Weiss分子场理论对有外电场时铁电体系相变特征的研究.  , 2012, 61(14): 140501. doi: 10.7498/aps.61.140501
    [13] 孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang MY. 原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理.  , 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
    [14] 宋婷婷, 何捷, 林理彬, 陈军. 氧化钒晶体的半导体至金属相变的理论研究.  , 2010, 59(9): 6480-6486. doi: 10.7498/aps.59.6480
    [15] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用.  , 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [16] 徐文武, 宋晓艳, 李尔东, 魏君, 李凌梅. 纳米尺度下Sm-Co合金体系中相组成与相稳定性的研究.  , 2009, 58(5): 3280-3286. doi: 10.7498/aps.58.3280
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究.  , 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, L. Gerward, 蒋建中. 高压下纳米锗的状态方程与相变.  , 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [19] 刘 红, 王 慧. 双轴性向列相液晶的相变理论.  , 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [20] 刘 红. 丝状相液晶由表面相互作用产生的相变.  , 2000, 49(7): 1321-1326. doi: 10.7498/aps.49.1321
计量
  • 文章访问数:  5914
  • PDF下载量:  863
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-10
  • 修回日期:  2014-01-24
  • 刊出日期:  2014-05-05

/

返回文章
返回
Baidu
map