-
提出了对称三材料双栅应变硅金属氧化物半导体场效应晶体管器件结构,为该器件结构建立了全耗尽条件下的表面势模型、表面场强和阈值电压解析模型,并分析了应变对表面势、表面场强和阈值电压的影响,讨论了三栅长度比率对阈值电压和漏致势垒降低效应的影响,对该结构器件与单材料双栅结构器件的性能进行了对比研究. 结果表明,该结构能进一步提高载流子的输运速率,更好地抑制漏致势垒降低效应. 适当优化三材料栅的栅长比率,可以增强器件对短沟道效应和漏致势垒降低效应的抑制能力.
-
关键词:
- 应变硅 /
- 金属氧化物半导体场效应晶体管 /
- 表面势 /
- 阈值电压
A novel double-gate strained Si metal-oxide-semiconductor field-effect transistor (MOSFET), in which the top and bottom gates consist of three laterally contacting materials with different work functions, is proposed in this paper. The two-dimensional (2D) analytical models for the surface potential, surface electric field and threshold voltage are presented. The effects of Ge fraction on surface potential, surface electric field and threshold voltage are investigated. The effects of the triple-material length ratio on threshold voltage and drain induced barrier lowering are discussed. The characteristics of the device are studied by comparing with those of the single-material double-gate MOSFETs. The results show that the structure can increase the carrier transport speed and suppress the drain induced barrier lowering effect. The three-material gate length ratio is optimized to minimize short-channel effect and drain induced barrier lowering effect.-
Keywords:
- strained Si /
- metal-oxide-semiconductor field-effect transistors /
- surface potential /
- threshold voltage
[1] Murali R, Austin B L, Wang L 2004 IEEE Trans. Electron Dev. 51 940
[2] [3] He J, Chan M, Xi X M 2006 Chin. J. Semicond. 27 388
[4] [5] Chiage T K, Chen M L 2007 Solid State Electron. 51 387
[6] Ade O C, Franeiseo J, Garcia S, Juan M 2007 Trans. Electron Dev. 54 131
[7] [8] Li J, Liu H X, Li B, Cao L, Yuan B 2010 Chin. Phys. B 19 107302
[9] [10] [11] Long W, Chin K K 1997 Tech. Dig.-Int. Electron Devices Meet. 549
[12] [13] Reddy G V, Kumar M J 2005 IEEE Trans. Nanotechnol. 4 260
[14] Luan S Z, Liu H X, Jia R X, Cai N Q 2008 Acta Phys. Sin. 57 3807 (in Chinese)[栾苏珍, 刘红侠, 贾仁需, 蔡乃琼 2008 57 3807]
[15] [16] [17] Razavi P, Orouji A A 2008 International Conference on Advances in Electronics and Mic-electronics Valenia, Spain, September 29-October 4, 2008 p11
[18] Pramod K T, Sarvesh D, Manjeet S, Jit S 2010 J. Appl. Phys. 108 074508
[19] [20] Sarvesh D, Dheeraj G, Pramod K T, Jit S 2011 J. Nano-Electron. Phys. 3 576
[21] [22] [23] Venkataraman V, Nawal S, Kummer M J 2007 IEEE Trans. Electron Dev. 54 554
[24] [25] Kummer M J, Venkataraman V, Nawal S 2006 IEEE Trans. Electron Dev. 53 364
-
[1] Murali R, Austin B L, Wang L 2004 IEEE Trans. Electron Dev. 51 940
[2] [3] He J, Chan M, Xi X M 2006 Chin. J. Semicond. 27 388
[4] [5] Chiage T K, Chen M L 2007 Solid State Electron. 51 387
[6] Ade O C, Franeiseo J, Garcia S, Juan M 2007 Trans. Electron Dev. 54 131
[7] [8] Li J, Liu H X, Li B, Cao L, Yuan B 2010 Chin. Phys. B 19 107302
[9] [10] [11] Long W, Chin K K 1997 Tech. Dig.-Int. Electron Devices Meet. 549
[12] [13] Reddy G V, Kumar M J 2005 IEEE Trans. Nanotechnol. 4 260
[14] Luan S Z, Liu H X, Jia R X, Cai N Q 2008 Acta Phys. Sin. 57 3807 (in Chinese)[栾苏珍, 刘红侠, 贾仁需, 蔡乃琼 2008 57 3807]
[15] [16] [17] Razavi P, Orouji A A 2008 International Conference on Advances in Electronics and Mic-electronics Valenia, Spain, September 29-October 4, 2008 p11
[18] Pramod K T, Sarvesh D, Manjeet S, Jit S 2010 J. Appl. Phys. 108 074508
[19] [20] Sarvesh D, Dheeraj G, Pramod K T, Jit S 2011 J. Nano-Electron. Phys. 3 576
[21] [22] [23] Venkataraman V, Nawal S, Kummer M J 2007 IEEE Trans. Electron Dev. 54 554
[24] [25] Kummer M J, Venkataraman V, Nawal S 2006 IEEE Trans. Electron Dev. 53 364
计量
- 文章访问数: 6317
- PDF下载量: 536
- 被引次数: 0