搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的光滑粒子流体动力学前处理方法

雷娟棉 黄灿

引用本文:
Citation:

一种改进的光滑粒子流体动力学前处理方法

雷娟棉, 黄灿

An improved pre-processing method for somooth particle hydrodynamics

Lei Juan-Mian, Huang Can
PDF
导出引用
  • 为了便于对任意边界形状的计算域快速地布置均匀粒子,提出了一种改进的光滑粒子流体动力学前处理方法. 该方法是在2012年Colagrossi等提出的算法基础上进行改进后得到的. Colagrossi 等提出的算法能够计算一些简单外形分布比较均匀的粒子. 然而当光滑长度与初始粒子间距的比值较大时该方法在计算过程中会出现较强的数值震荡问题,收敛速度慢;而且在计算过程中可能会遭遇流体粒子穿透固体壁面的问题. 本文通过引入未知因素修正的平滑粒子动力学模型来提高计算稳定性,并通过对边界附近的流体粒子施加边界力来避免流体粒子穿透固体壁面. 算例验证结果表明,利用改进后的光滑粒子流体动力学前处理方法能够快速地对各种边界形状的计算域分布均匀粒子,并且避免了流体粒子穿透固体壁面的问题.
    An improved pre-processing method for smooth particle hydrodynamics is proposed, which can rapidly distribute the uniform particles for the fluid field with an arbitrary boundary. The improved pre-processing method is obtained by improving the algorithm proposed by Colagrossi et al., whose method can distribute the uniform particles in a simple shape. However, when the ratio of the smoothing length to the initial particle space is bigger than unity, the algorithm proposed by Colagrossi et al. has a numerical oscillation and a slow convergence rate; and the fluid particles may penetrate the solid boundary. For solving the problems, the XSPH model is added to improve the algorithm stability, and the boundary force is exerted on the fluid particles near the solid boundary to prevent fluid particles from penetrating wall surface. Verified by showing some exmples, the improved pre-processing method can rapidly distribute the more uniform particles for the fluid field with an arbitrary boundary and prevent fluid particles from penetrating wall surface.
    [1]

    Liu M B, Liu G R 2010 Arxiv. Comput. Methods Engrg. 17 25

    [2]

    Zhang A M 2008 Chin. Phys. B 17 927

    [3]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [4]

    Zhong C W, Xie J F, Zhuo C S, Xiong S W, Yin D C 2009 Chin. Phys. B 18 4083

    [5]

    Wang J F, Sun F X, Cheng R J 2010 Chin. Phys. B 19 060201

    [6]

    Cheng R J, Cheng Y M, Ge H X 2009 Chin. Phys. B 18 4059

    [7]

    Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [8]

    Lucy L B 1977 Astron. J. 82 1013

    [9]

    Monaghan J J 2005 Rep. Prog. Phys. 68 1703

    [10]

    Monaghan J J 2012 Annu. Rev. Fluid Mech. 44 323

    [11]

    Xu R, Stansby P, Aurence D L 2009 J. Comput. Phys. 228 6703

    [12]

    Yang X Y, Liu M B 2012 Acta Phys. Sin. 61 224701 (in Chinese) [杨秀峰, 刘谋斌 2012 61 224701]

    [13]

    Marrone S, Colagrossi A, Antuono M, Colicchio G, Graziani G 2013 J. Comput. Phys. 245 456

    [14]

    Shadloo M S, Zainali A, Yildiz M, Suleman A 2012 Int. J. Numer. Meth. Engng. 89 939

    [15]

    Jiang T, Ouyang J, Zhao X K, Ren J L 2011 Acta Phys. Sin. 60 054701 (in Chinese) [蒋涛, 欧阳洁, 赵晓凯, 任金莲 2011 60 054701]

    [16]

    Jiang T, Lu G L, Lu W G 2013 Acta Phys. Sin. 62 224701 (in Chinese) [蒋涛, 陆广林, 陆伟刚 2013 62 224701]

    [17]

    Qiu L C 2013 Acta Phys. Sin. 62 124702 (in Chinese) [邱流潮 2013 62 124702]

    [18]

    Qiang H F, Shi C, Chen F Z Han Y W 2013 Acta Phys. Sin. 62 214701 (in Chinese) [强洪夫, 石超, 陈福振, 韩亚伟 2013 62 214701]

    [19]

    Quinlan N J, Lastiwka M, Basa M 2006 Int. J. Numer. Meth. Engng. 66 2064

    [20]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654 (in Chinese) [刘谋斌, 常建忠 2010 59 3654]

    [21]

    Price D J 2007 Publ. Astron. Soc. Aust. 24 159

    [22]

    Colagrossi A, Bouscasse B, Antuono M, Marrone S 2012 Comput. Phys. Commun. 183 1641

    [23]

    Monaghan J J 1989 J. Comput. Phys. 82 1

    [24]

    Liu M B, Liu G R 2006 Appl. Num. Math. 56 19

    [25]

    Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P 1996 Comput. Methods Appl. Mech. Engrg. 139 3

    [26]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [27]

    Macià F, Antuono M, Gonzales L M, Colagrossi A 2011 Prog. Theor. Phys. 125 1091

    [28]

    Yildiz M, Rook R A, Suleman A 2009 Int. J. Numer. Meth. Engng. 77 1416

    [29]

    Monaghan J J 1994 J. Comput. Phys. 110 399

    [30]

    Monaghan J J, Kajtar J B 2009 Comput. Phys. Commun. 180 1811

    [31]

    Liu M B, Shao J R 2012 Sci. China: Technol. Sci. 10 1

    [32]

    Han Y W, Qiang H F, Zhao J L, Gao W R 2013 Acta Phys. Sin. 62 044702 (in Chinese) [韩亚伟, 强洪夫, 赵玖玲, 高巍然 2013 62 044702]

    [33]

    Larry D L, Albert G P, Theodore C C, Jim R H Firooz A A 1993 J. Comput. Phys. 109 67

  • [1]

    Liu M B, Liu G R 2010 Arxiv. Comput. Methods Engrg. 17 25

    [2]

    Zhang A M 2008 Chin. Phys. B 17 927

    [3]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [4]

    Zhong C W, Xie J F, Zhuo C S, Xiong S W, Yin D C 2009 Chin. Phys. B 18 4083

    [5]

    Wang J F, Sun F X, Cheng R J 2010 Chin. Phys. B 19 060201

    [6]

    Cheng R J, Cheng Y M, Ge H X 2009 Chin. Phys. B 18 4059

    [7]

    Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [8]

    Lucy L B 1977 Astron. J. 82 1013

    [9]

    Monaghan J J 2005 Rep. Prog. Phys. 68 1703

    [10]

    Monaghan J J 2012 Annu. Rev. Fluid Mech. 44 323

    [11]

    Xu R, Stansby P, Aurence D L 2009 J. Comput. Phys. 228 6703

    [12]

    Yang X Y, Liu M B 2012 Acta Phys. Sin. 61 224701 (in Chinese) [杨秀峰, 刘谋斌 2012 61 224701]

    [13]

    Marrone S, Colagrossi A, Antuono M, Colicchio G, Graziani G 2013 J. Comput. Phys. 245 456

    [14]

    Shadloo M S, Zainali A, Yildiz M, Suleman A 2012 Int. J. Numer. Meth. Engng. 89 939

    [15]

    Jiang T, Ouyang J, Zhao X K, Ren J L 2011 Acta Phys. Sin. 60 054701 (in Chinese) [蒋涛, 欧阳洁, 赵晓凯, 任金莲 2011 60 054701]

    [16]

    Jiang T, Lu G L, Lu W G 2013 Acta Phys. Sin. 62 224701 (in Chinese) [蒋涛, 陆广林, 陆伟刚 2013 62 224701]

    [17]

    Qiu L C 2013 Acta Phys. Sin. 62 124702 (in Chinese) [邱流潮 2013 62 124702]

    [18]

    Qiang H F, Shi C, Chen F Z Han Y W 2013 Acta Phys. Sin. 62 214701 (in Chinese) [强洪夫, 石超, 陈福振, 韩亚伟 2013 62 214701]

    [19]

    Quinlan N J, Lastiwka M, Basa M 2006 Int. J. Numer. Meth. Engng. 66 2064

    [20]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654 (in Chinese) [刘谋斌, 常建忠 2010 59 3654]

    [21]

    Price D J 2007 Publ. Astron. Soc. Aust. 24 159

    [22]

    Colagrossi A, Bouscasse B, Antuono M, Marrone S 2012 Comput. Phys. Commun. 183 1641

    [23]

    Monaghan J J 1989 J. Comput. Phys. 82 1

    [24]

    Liu M B, Liu G R 2006 Appl. Num. Math. 56 19

    [25]

    Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P 1996 Comput. Methods Appl. Mech. Engrg. 139 3

    [26]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [27]

    Macià F, Antuono M, Gonzales L M, Colagrossi A 2011 Prog. Theor. Phys. 125 1091

    [28]

    Yildiz M, Rook R A, Suleman A 2009 Int. J. Numer. Meth. Engng. 77 1416

    [29]

    Monaghan J J 1994 J. Comput. Phys. 110 399

    [30]

    Monaghan J J, Kajtar J B 2009 Comput. Phys. Commun. 180 1811

    [31]

    Liu M B, Shao J R 2012 Sci. China: Technol. Sci. 10 1

    [32]

    Han Y W, Qiang H F, Zhao J L, Gao W R 2013 Acta Phys. Sin. 62 044702 (in Chinese) [韩亚伟, 强洪夫, 赵玖玲, 高巍然 2013 62 044702]

    [33]

    Larry D L, Albert G P, Theodore C C, Jim R H Firooz A A 1993 J. Comput. Phys. 109 67

  • [1] 谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣. 计入粗糙峰的微纳结构表面水润滑流体动力学仿真.  , 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [2] 许晓阳, 周亚丽, 余鹏. eXtended Pom-Pom黏弹性流体的改进光滑粒子动力学模拟.  , 2023, 72(3): 034701. doi: 10.7498/aps.72.20221922
    [3] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理.  , 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [4] 戴伟, 刘清惓, 杨杰, 宿恺峰, 韩上邦, 施佳驰. 探空温度传感器的计算流体动力学分析与实验研究.  , 2016, 65(11): 114701. doi: 10.7498/aps.65.114701
    [5] 陈福振, 强洪夫, 苗刚, 高巍然. 燃料抛撒成雾及其燃烧爆炸的光滑离散颗粒流体动力学方法数值模拟研究.  , 2015, 64(11): 110202. doi: 10.7498/aps.64.110202
    [6] 刘虎, 强洪夫, 陈福振, 韩亚伟, 范树佳. 一种新型光滑粒子动力学固壁边界施加模型.  , 2015, 64(9): 094701. doi: 10.7498/aps.64.094701
    [7] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟.  , 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [8] 蒋涛, 任金莲, 徐磊, 陆林广. 非等温非牛顿黏性流体流动问题的修正光滑粒子动力学方法模拟.  , 2014, 63(21): 210203. doi: 10.7498/aps.63.210203
    [9] 陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟.  , 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [10] 冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏. 探空湿度测量太阳辐射误差修正流体动力学研究.  , 2014, 63(14): 144701. doi: 10.7498/aps.63.144701
    [11] 陈福振, 强洪夫, 高巍然. 风沙运动问题的SPH-FVM耦合方法数值模拟研究.  , 2014, 63(13): 130202. doi: 10.7498/aps.63.130202
    [12] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学.  , 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [13] 强洪夫, 石超, 陈福振, 韩亚伟. 基于大密度差多相流SPH方法的二维液滴碰撞数值模拟.  , 2013, 62(21): 214701. doi: 10.7498/aps.62.214701
    [14] 韩亚伟, 强洪夫, 赵玖玲, 高巍然. 光滑粒子流体动力学方法固壁处理的一种新型排斥力模型.  , 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [15] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟.  , 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [16] 强洪夫, 刘开, 陈福振. 液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟.  , 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [17] 蒋涛, 欧阳洁, 赵晓凯, 任金莲. 黏性液滴变形过程的核梯度修正光滑粒子动力学模拟.  , 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [18] 于溪凤, 胡火生, 贺礼端, 蒋 政, 刘 祥, 胡壮麒. 电流体动力学技术制备的Sn-Bi纳米超微粉的微观结构特征.  , 1999, 48(6): 1030-1036. doi: 10.7498/aps.48.1030
    [19] 匡光力, G.WAIDMANN. TEXTOR托卡马克等离子体的磁流体动力学振荡特性.  , 1994, 43(9): 1466-1475. doi: 10.7498/aps.43.1466
    [20] 谢学纲, 陈式刚, 洪朝生. 超导体流体动力学方程.  , 1990, 39(4): 632-638. doi: 10.7498/aps.39.632
计量
  • 文章访问数:  6722
  • PDF下载量:  856
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-16
  • 修回日期:  2014-03-01
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map