搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单个纳米粒子对聚合物结晶行为的影响

段芳莉 王源

引用本文:
Citation:

单个纳米粒子对聚合物结晶行为的影响

段芳莉, 王源

Effect of single nanoparticle on the polymer crystallization behavior

Duan Fang-Li, Wang Yuan
PDF
导出引用
  • 采用粗粒化模型,应用分子动力学方法研究了单个纳米粒子对聚合物结晶行为的影响. 通过改变纳米粒子与聚合物单体之间作用方式(吸引作用或排斥作用)、纳米粒子与聚合物单体之间作用强度和聚合物分子链的长度,计算整个系统和局部区域的有序参数,研究了三个不同因素下纳米粒子对聚合物结晶行为的不同影响. 研究表明,在聚合物基体中添加单个纳米粒子,纳米粒子对整个系统的结晶影响不明显,但是纳米粒子对其周围聚合物单体的结晶存在局部强化作用. 当纳米粒子与聚合物单体之间为吸引作用且作用强度较大时,纳米粒子对聚合物结晶表现出明显的局部强化作用,聚合物分子链长度也有着一定的影响,在较大吸引作用强度下,长链样本比短链样本有着更为显著的局部强化作用.
    Molecular dynamics simulation with a coarse grain model is performed to study the influence of single nanoparticle on the polymer crystallization behavior. By changing the mode of action of the polymer-nanoparticle (i.e. attraction or repulsion), the strength of the polymer-nanoparticle interactions, as well as the chain length of the polymer molecular, and by calculating the bond order parameter to characterize the influence in the cooling process, different effects of single nanoparticle on the polymer crystallization behavior are studied. This study has shown that the nanoparticle has no obvious effect on the whole polymer system composed of single nanoparticles. However, nanoparticles can promote the degree of order of polymer chains in crystallization process and enhance partially the polymer crystallization. Under the attraction and strong strength of the polymer-nanoparticle interaction, it is found that obviously the nanoparticle enhances the polymer crystallization partially. Furthermore, the chain length of the polymer molecular also shows some effect on the crystallization and the long-chain sample has a better enhancement for the polymer crystallization than the short-chain one under a strong attraction strength.
    • 基金项目: 中央高校基本科研业务费(批准号:CDJZR12248801)和国家自然科学基金(批准号:50875271)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. CDJZR12248801), and the National Natural Science Foundation of China (Grant No. 50875271).
    [1]

    Jancar J, Douglas J F, Starr F W, Kumar S K, Cassagnau P, Lesser A J, Sternstein S S, Buehler M J 2010 Polymer 51 3321

    [2]

    Gao X, Jin M N, Bu H S 2000 J. Polym. Sci. Part B: Polym. Phys 38 3285

    [3]

    Mucha M, Marszalek J, Fidrych A 2000 Polymer 41 4137

    [4]

    Kim S H, Ahn S H, Hirai T 2003 Polymer 44 5625

    [5]

    Zhou X M, Chen X M, Wu X B, Shui J P, Zhu Z G 2011 Acta Phys. Sin. 60 036102 (in Chinese) [周学懋, 陈晓萌, 吴学邦, 水嘉鹏, 朱震刚 2011 60 036102]

    [6]

    Strobl G 2000 Eur. Phys. J. E 3 165

    [7]

    Starr F W, Schrøder T B, Glotzer S C 2002 Macromolecules 35 4481

    [8]

    Rittigstein P, Torkelson J M 2006 J. Polym. Sci. Part B: Polym. Phys. 44 2935

    [9]

    LeBaron P C, Wang Z, Pinnavaia T J 1999 Appl. Clay Sci. 15 11

    [10]

    Andrews R, Weisenberger M C 2004 Curr. Opin. Solid State Mat. Sci. 8 31

    [11]

    Sahoo N G, Rana S, Cho J W, Li L, Chan S H 2010 Prog. Polym. Sci. 35 837

    [12]

    Wu X B, Shang S Y, Xu Q L, Shui J P, Zhu Z G 2007 Acta Phys. Sin. 56 4798 (in Chinese) [吴学邦, 尚淑英, 许巧玲, 水嘉鹏, 朱震钢 2007 56 4798]

    [13]

    Smith J S, Bedrov D, Smith G D 2003 Compos. Sci. Technol. 63 1599

    [14]

    Brown D 2007 Macromolecules 41 1499

    [15]

    Wu X B, Xu Q L, Shang S Y, Shui J P 2008 Chin. Phys. Lett. 25 1338

    [16]

    Liu J, Gao Y Y, Cao D P, Zhang L Q, Guo Z H 2011 Langmuir 27 7926

    [17]

    Liu J, Wu S Z, Zhang L Q, Wang W C, Cao D P 2011 Phys. Chem. Chem. Phys. 13 518

    [18]

    Wang X H, Li S B, Zhang L X, Liang H J 2011 Chin Phys B 20 083601

    [19]

    Duan F L, Yan S D 2012 Chin. J. Comput. Phys. 29 759 (in Chinese) [段芳莉, 颜世铛 2012 计算物理 29 759]

    [20]

    Meyer H, Muller-Plathe F 2001 J. Chem. Phys 115 7807

    [21]

    Reith D, Meyer H, Muller-Plathe F 2001 Macromolecules 34 2335

    [22]

    Meyer H, Muller-Plathe F 2002 Macromolecules 35 1241

    [23]

    Meyer H 2006 J. Chem. Theory Comput 2 616

    [24]

    Zhang D S, Meyer H 2007 J. Polym. Sci. Part B: Polym. Phys. 45 2161

    [25]

    Plimpton S 1995 J. Comput. Phys. 7 1

  • [1]

    Jancar J, Douglas J F, Starr F W, Kumar S K, Cassagnau P, Lesser A J, Sternstein S S, Buehler M J 2010 Polymer 51 3321

    [2]

    Gao X, Jin M N, Bu H S 2000 J. Polym. Sci. Part B: Polym. Phys 38 3285

    [3]

    Mucha M, Marszalek J, Fidrych A 2000 Polymer 41 4137

    [4]

    Kim S H, Ahn S H, Hirai T 2003 Polymer 44 5625

    [5]

    Zhou X M, Chen X M, Wu X B, Shui J P, Zhu Z G 2011 Acta Phys. Sin. 60 036102 (in Chinese) [周学懋, 陈晓萌, 吴学邦, 水嘉鹏, 朱震刚 2011 60 036102]

    [6]

    Strobl G 2000 Eur. Phys. J. E 3 165

    [7]

    Starr F W, Schrøder T B, Glotzer S C 2002 Macromolecules 35 4481

    [8]

    Rittigstein P, Torkelson J M 2006 J. Polym. Sci. Part B: Polym. Phys. 44 2935

    [9]

    LeBaron P C, Wang Z, Pinnavaia T J 1999 Appl. Clay Sci. 15 11

    [10]

    Andrews R, Weisenberger M C 2004 Curr. Opin. Solid State Mat. Sci. 8 31

    [11]

    Sahoo N G, Rana S, Cho J W, Li L, Chan S H 2010 Prog. Polym. Sci. 35 837

    [12]

    Wu X B, Shang S Y, Xu Q L, Shui J P, Zhu Z G 2007 Acta Phys. Sin. 56 4798 (in Chinese) [吴学邦, 尚淑英, 许巧玲, 水嘉鹏, 朱震钢 2007 56 4798]

    [13]

    Smith J S, Bedrov D, Smith G D 2003 Compos. Sci. Technol. 63 1599

    [14]

    Brown D 2007 Macromolecules 41 1499

    [15]

    Wu X B, Xu Q L, Shang S Y, Shui J P 2008 Chin. Phys. Lett. 25 1338

    [16]

    Liu J, Gao Y Y, Cao D P, Zhang L Q, Guo Z H 2011 Langmuir 27 7926

    [17]

    Liu J, Wu S Z, Zhang L Q, Wang W C, Cao D P 2011 Phys. Chem. Chem. Phys. 13 518

    [18]

    Wang X H, Li S B, Zhang L X, Liang H J 2011 Chin Phys B 20 083601

    [19]

    Duan F L, Yan S D 2012 Chin. J. Comput. Phys. 29 759 (in Chinese) [段芳莉, 颜世铛 2012 计算物理 29 759]

    [20]

    Meyer H, Muller-Plathe F 2001 J. Chem. Phys 115 7807

    [21]

    Reith D, Meyer H, Muller-Plathe F 2001 Macromolecules 34 2335

    [22]

    Meyer H, Muller-Plathe F 2002 Macromolecules 35 1241

    [23]

    Meyer H 2006 J. Chem. Theory Comput 2 616

    [24]

    Zhang D S, Meyer H 2007 J. Polym. Sci. Part B: Polym. Phys. 45 2161

    [25]

    Plimpton S 1995 J. Comput. Phys. 7 1

  • [1] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟.  , 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [2] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为.  , 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [3] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟.  , 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [4] 韦国翠, 田泽安. 不同尺寸Cu64Zr36纳米液滴的快速凝固过程分子动力学模拟.  , 2021, 70(24): 246401. doi: 10.7498/aps.70.20211235
    [5] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟.  , 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [6] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响.  , 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [7] 司丽娜, 王晓力. 纳米沟槽表面黏着接触过程的分子动力学模拟研究.  , 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [8] 苏锦芳, 宋海洋, 安敏荣. 金纳米管力学性能的分子动力学模拟.  , 2013, 62(6): 063103. doi: 10.7498/aps.62.063103
    [9] 李明林, 林凡, 陈越. 碳纳米锥力学特性的分子动力学研究.  , 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [10] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响.  , 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [11] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究.  , 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [12] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究.  , 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [13] 颜克凤, 李小森, 孙丽华, 陈朝阳, 夏志明. 储氢笼型水合物生成促进机理的分子动力学模拟研究.  , 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [14] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟.  , 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [15] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟.  , 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [16] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟.  , 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [17] 颜克凤, 李小森, 陈朝阳, 李 刚, 李志宝. 用分子动力学模拟甲烷水合物热激法结合化学试剂法分解.  , 2007, 56(11): 6727-6735. doi: 10.7498/aps.56.6727
    [18] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟.  , 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [19] 何 兰, 沈允文, 容启亮, 徐 雁. 基于分子动力学模拟的主链型液晶聚合物的新模型.  , 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟.  , 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  6291
  • PDF下载量:  853
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-13
  • 修回日期:  2014-03-25
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map