-
提出了共享孔径雷达吸波材料(shared aperture radar absorbing material,SA-RAM)的设计方法. 该方法将无源人工电磁媒质(metamaterials,MTM)的散射问题等效为有源阵列的辐射问题进行研究,利用阵列天线原理对有限周期MTM单元构成的MTM子孔径的位置信息、幅度信息、相位信息进行优化设计,实现具有不同功能的SA-RAM. 在此基础上,设计了一种基于人工磁导体(artificial magnetic conductor,AMC)子孔径和完美吸波体(perfect metamaterial absorber,PMA)子孔径的SA-RAM,该SA-RAM通过将AMC子孔径与PMA子孔径交错布阵,实现了具有吸波和相位相消特性的SA-RAM. 仿真和实验结果表明,该SA-RAM较金属板的后向雷达散射截面(radar cross section,RCS)在5.5–8.3 GHz都有明显的减缩,在5.54 GHz处的减缩是由于PMA的高吸波率引起的,在7.0 GHz处的减缩是由于AMC子孔径和PMA子孔径相位相消引起的. 研究结果对频域和空域隐身相结合的雷达吸波材料设计具有重要的指导意义.
-
关键词:
- 共享孔径雷达吸波材料 /
- 人工磁导体 /
- 完美吸波材料 /
- 雷达散射截面
A method of designing a kind of shared aperture radar absorbing material (SA-RAM) is presented, in which method the scattering problem of passive metamaterial (MTM) is converted into the radiation problem of active array. Multifunctional SA-RAM is realized by optimizing the position, amplitude, and phase of the MTM subarray composed of finite MTM structures based on the array theory. An SA-RAM with absorber and phase cancellation characteristics is fulfilled by interleaving artificial magnetic conductor (AMC) subarray and perfect metamaterial absorber (PMA) subarray. Simulation and experimental results demonstrate that the backscattering radar cross section (RCS) of SA-RAM is smaller than that of the metal plate in a frequency range of 5.5-8.3 GHz. Especially, the RCS reduction is caused by high absorbance at 5.54 GHz and by phase cancellation between AMC subarray and PMA subarray at 7.0 GHz. The idea can help to design radar absorbing material, which combines frequency stealth with space stealth function.-
Keywords:
- shared aperture radar absorbing material /
- artificial magnetic conductor /
- perfect metamaterial absorber /
- radar cross section
[1] Ronald L F, Michael T M 1988 IEEE Trans. Antennas Propag. 36 1443
[2] Sievenpiper D, Zhang L J, Broas R F J, Alexópolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory Tech. 47 2059
[3] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184
[4] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534
[5] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
[6] Gao Q, Yin Y, Yan D B 2005 Electron. Lett. 41 3
[7] Li Y Q, Zhang H, Fu Y Q, Yuan N C 2008 IEEE Anten. Wirel. Propag. Lett. 7 473
[8] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[9] Marcus D, Thomas K, Soukoulis C M 2009 Phys. Rev. B 79 033101
[10] Huang Y J, Wen G J, Li J, Zhong J P, Wang P, Sun Y H, Gordon O, Zhu W R 2012 Chin. Phys. B 21 117801
[11] Li H, Dibakar R C, Suchitra R, Matthew T R 2012 Appl. Phys. Lett. 101 101102
[12] Cheng Y Z, Nie Y, Gong R Z 2013 Appl. Phys. B 111 483
[13] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479
[14] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802
[15] Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photonic Tech. Lett. 26 111
[16] Paquay M, Iriarte J C, Ederra I 2007 IEEE Trans. Antennas Propag. 55 3630
[17] Simms S, Fusco V 2008 Electron. Lett. 44 316
[18] Zhang Y, Mittra R, Wang B Z, Huang N T 2009 Electron. Lett. 45 484
[19] Fu Y Q, Li Y Q, Yuan N C 2011 Microw. Opt. Technol. Lett. 53 712
[20] Yao X, Cao X Y, Gao J, Yang Q 2012 Prog. Electromag. Res. Lett. 32 11
[21] Lu L, Qu S B, Ma H, Xia S, Xu Z, Wang J F, Yu F 2013 Acta Phys. Sin. 62 034206 (in Chinese)[鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐 2013 62 034206]
[22] Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese)[赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 62 154204]
[23] Edalati A, Sarabandi K 2014 IEEE Trans. Antennas Propag. 62 747
[24] Hwang R B, Tsai Y L 2012 AIP Advances 2 012128
[25] Axness T A, Coffman R V, Kopp B A, O'Hare K W 1996 Johns Hopkins APL Technical Digest 17 285
[26] Fourikis N 2000 Advanced Array Systems, Applications and RF Technologies (California: A Harcourt Science and Technology Company) p111
[27] Chu Q X, Ma H Q, Zheng H L 2008 IEEE Trans. Antennas Propag. 56 3391
[28] Mauricio S B, Jackson R W, Frasier S 2012 IEEE Trans. Geosci. Remote 50 1283
[29] Zhong S H, Sun Z, Kong L B 2012 IEEE Trans. Antennas Propag. 60 4157
[30] Naishadham K, Li R L, Yang L 2013 IEEE Trans. Antennas Propag. 61 606
[31] Smith T, Gothelf U, Kim O S, Breinbjerg O 2014 IEEE Trans. Antennas Propag. 62 661
[32] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617
[33] Szabo Z, Park G H, Hedge R 2010 IEEE Trans. Microw. Theory Tech. 58 2646
[34] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104
[35] He X J, Wang Y, Wang J M, Gui T L 2011 Prog. Electromag. Res. 115 381
-
[1] Ronald L F, Michael T M 1988 IEEE Trans. Antennas Propag. 36 1443
[2] Sievenpiper D, Zhang L J, Broas R F J, Alexópolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory Tech. 47 2059
[3] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184
[4] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534
[5] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
[6] Gao Q, Yin Y, Yan D B 2005 Electron. Lett. 41 3
[7] Li Y Q, Zhang H, Fu Y Q, Yuan N C 2008 IEEE Anten. Wirel. Propag. Lett. 7 473
[8] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[9] Marcus D, Thomas K, Soukoulis C M 2009 Phys. Rev. B 79 033101
[10] Huang Y J, Wen G J, Li J, Zhong J P, Wang P, Sun Y H, Gordon O, Zhu W R 2012 Chin. Phys. B 21 117801
[11] Li H, Dibakar R C, Suchitra R, Matthew T R 2012 Appl. Phys. Lett. 101 101102
[12] Cheng Y Z, Nie Y, Gong R Z 2013 Appl. Phys. B 111 483
[13] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479
[14] Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802
[15] Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photonic Tech. Lett. 26 111
[16] Paquay M, Iriarte J C, Ederra I 2007 IEEE Trans. Antennas Propag. 55 3630
[17] Simms S, Fusco V 2008 Electron. Lett. 44 316
[18] Zhang Y, Mittra R, Wang B Z, Huang N T 2009 Electron. Lett. 45 484
[19] Fu Y Q, Li Y Q, Yuan N C 2011 Microw. Opt. Technol. Lett. 53 712
[20] Yao X, Cao X Y, Gao J, Yang Q 2012 Prog. Electromag. Res. Lett. 32 11
[21] Lu L, Qu S B, Ma H, Xia S, Xu Z, Wang J F, Yu F 2013 Acta Phys. Sin. 62 034206 (in Chinese)[鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐 2013 62 034206]
[22] Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese)[赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 62 154204]
[23] Edalati A, Sarabandi K 2014 IEEE Trans. Antennas Propag. 62 747
[24] Hwang R B, Tsai Y L 2012 AIP Advances 2 012128
[25] Axness T A, Coffman R V, Kopp B A, O'Hare K W 1996 Johns Hopkins APL Technical Digest 17 285
[26] Fourikis N 2000 Advanced Array Systems, Applications and RF Technologies (California: A Harcourt Science and Technology Company) p111
[27] Chu Q X, Ma H Q, Zheng H L 2008 IEEE Trans. Antennas Propag. 56 3391
[28] Mauricio S B, Jackson R W, Frasier S 2012 IEEE Trans. Geosci. Remote 50 1283
[29] Zhong S H, Sun Z, Kong L B 2012 IEEE Trans. Antennas Propag. 60 4157
[30] Naishadham K, Li R L, Yang L 2013 IEEE Trans. Antennas Propag. 61 606
[31] Smith T, Gothelf U, Kim O S, Breinbjerg O 2014 IEEE Trans. Antennas Propag. 62 661
[32] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617
[33] Szabo Z, Park G H, Hedge R 2010 IEEE Trans. Microw. Theory Tech. 58 2646
[34] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104
[35] He X J, Wang Y, Wang J M, Gui T L 2011 Prog. Electromag. Res. 115 381
计量
- 文章访问数: 6735
- PDF下载量: 974
- 被引次数: 0