搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PdnAl(n=18)二元团簇的密度泛函理论研究

温俊青 张建民 姚攀 周红 王俊斐

引用本文:
Citation:

PdnAl(n=18)二元团簇的密度泛函理论研究

温俊青, 张建民, 姚攀, 周红, 王俊斐

A density functional theory study of small bimetallic PdnAl (n =18) clusters

Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei
PDF
导出引用
  • 采用密度泛函理论(DFT)方法,在BPW91/LANL2DZ水平下详细研究了PdnAl(n=18)团簇的几何结构、稳定性和电极化率,并与Pdn+1和PdnAl(n=18)团簇进行了比较. 结果表明:除n=6,8外,PdnAl团簇和Pdn+1团簇的基态结构保持了相同的构型,除Pd2Al和Pd6Al+外,PdnAl团簇的基态结构与PdnAl团簇的保持了相同的结构. 且在PdnAl和PdnAl团簇基态结构中,Al原子位于较高的配位点上. 分裂能和二阶能量差分的分析结果表明Pd4,Pd3Al和Pd3Al团簇相对其他团簇具有较高的稳定性. 极化率的研究表明富Pd团簇的非线性光学效应强,容易被外场极化. Pd6,Pd5Al和Pd3Al团簇的极化率各向异性不变量为最小值,说明相应团簇对外场的各向异性响应最弱,各方向的极化率大小变化不大.
    Geometries, stabilities, and polarizations of PdnAl(n=18) have been calculated using the density functional theory at BPW91/LANL2DZ level. The growth pattern for different sized PdnAl(n=18)clusters is of Al-substituted Pdn+1 clusters, which shows the similar configuration of most stable Pdn+1 clusters except that of Pd6Al and Pd8Al. Geometries of ground state PdnAl(n=18) clusters keep the same structures of PdnAl clusters except that of Pd2Aland Pd6Al+. Al atoms in the ground state PdnAl and PdnAl isomers tend to occupy the most highly coordinated position. Analysis of stabilities shows that Pd4, Pd3Al and Pd3Al are more stable than other clusters. Study of polarizations shows that Pd-rich clusters have a strong nonlinear optical effect and are easy to be polarized by external electromagnetic field.
    • 基金项目: 国家自然科学基金(批准号:11247229,61240028),陕西省教育厅科研计划项目(批准号:2013JK0629)和西安石油大学大学生科研训练计划(批准号:Z12187)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11247229, 61240028), the Science Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 2013JK0629), and the Research Training Program for College Students in Xi'an Shiyou University, China (Grant No. Z12187).
    [1]

    Efremenko I, Sheintuch M 1998 Surf. Sci. 414 148

    [2]

    Karabacak M, Ozcelik S, Gvenc Z B 2002 Surf. Sci. 507 636

    [3]

    Kruger S, Vent S, Ncörtemann F, Staufer M 2001 J. Chem. Phys. 115 2082

    [4]

    Schebarchov D, Hendy S C 2006 Phys. Rev. B 73 121402

    [5]

    Sampedro B, Crespo P, Hernando A 2003 Phys. Rev. Lett. 91 237203

    [6]

    Shinohara T, Sato T, Taniyama T 2003 Phys. Rev. Lett. 91 197201

    [7]

    Lee K 1998 Phys. Rev. B 58 2391

    [8]

    Moseler M, Häkkinen H, Barnett R N 2001 Phys. Rev. Lett. 86 2545

    [9]

    Kumar V, Kawazoe Y 2002 Phys. Rev. B 66 144413

    [10]

    Barretau C, Guirado-López R, Spanjaard D 2000 Phys. Rev. B 61 7781

    [11]

    Guo J J, Yang J X, Die D, Yu G F, Jiang G 2005 Acta Phys. Sin. 54 3571 (in Chinese) [郭建军, 杨继先, 迭东, 于桂凤, 蒋刚 2005 54 3571]

    [12]

    Fang F, Jiang G, Wang H Y 2006 Acta Phys. Sin. 55 2241 (in Chinese) [方芳, 蒋刚, 王红艳 2006 55 2241]

    [13]

    Zhao K, Zhang K, Wang J J, Yu J, Wu S X 2013 Acta Phys. Sin. 62 127101 (in Chinese) [赵昆, 张坤, 王家佳, 于金, 吴三械 2013 62 127101]

    [14]

    Wen J Q, Zhou H, Zhang C J, Wang J F 2013 Chin. J. Comp. Phys. 30 596 (in Chinese) [温俊青, 周红, 张陈俊, 王俊锋 2013 计算物理 30 596]

    [15]

    Ge G X, Tang G H, Jing Q, Luo Y H 2009 Acta. Phys. Chim. Sin. 25 1195 (in Chinese) [葛桂贤, 唐光辉, 井群, 罗有华 2009 物理化学学报 25 1195]

    [16]

    Jin R, Chen X H 2010 Acta Phys. Sin. 59 6955 (in Chinese) [金蓉, 谌晓洪 2010 59 6955]

    [17]

    Zhu J, Jin R 2008 J. At. Mol. Phys. 25 1328 (in Chinese) [朱俊, 金蓉 2008 原子与分子 25 1328]

    [18]

    Koyasu K, Mitsui M, Nakajima A 2002 Chem. Phys. Lett. 358 224

    [19]

    Guo J J, Yang J X, Die D 2005 Physica B 367 158

    [20]

    Guo J J, Shi J, Yang J X 2007 Physica B 393 363

    [21]

    Arratia P R, Hern A L 1999 Chem. Phys. Lett. 303 641

    [22]

    Kilimis D A, Papageorgiou D G 2010 J. Mol. Struct. (Theochem.) 939 112

    [23]

    Efremenko I, Sheintuch M 2005 Chem. Phys. Lett. 401 232

    [24]

    Tang C M, Chen S W, Zhu W H, Tao C J, Zhang A M, Gong J F, Zou H, Liu M Y, Zhu F 2012 Chin. Phys. B 21 117101

    [25]

    L J, Qin J P, Wu H S 2014 Acta Phys. Sin. 63 053101 (in Chinese) [吕瑾, 秦键萍, 武海顺 2014 63 053101]

    [26]

    Wen J Q, Jiang Z Y, Li J Q, Cao L K, Chu S Y 2010 Int. J. Quan. Chem. 110 1368

    [27]

    Wen J Q, Jiang Z Y, Hou Y Q, Li J Q, Chu S Y 2010 J. Mol. Struct. (Theochem.) 949 91

    [28]

    Zhao G F, Zhang J, Jing Q 2007 J. Chem. Phys. 127 234312

    [29]

    Xiang J, Wei S H, Yan X H, You J Q, Mao Y L 2004 J. Chem. Phys. 120 4251

    [30]

    Guo L 2009 Comp. Mater. Sci. 45 951

    [31]

    Gu J B, Yang X D, Wang H Q, Li H F 2012 Chin. Phys. B 21 043102 (in Chinese)[顾建兵, 杨向东, 王怀谦, 李慧芳 2012 中国物理 21 043102]

    [32]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [33]

    Adamo C, Barone V 1998 J. Chem. Phys. 108 664

    [34]

    Hay P J, Wadt W R 1985 J. Chem. Phys. 82 270

    [35]

    Frisch M J, Trucks G W, Schlegel H B 2003 GAUSSIAN 03 (Revision A. 1) (Gaussian Inc., Pittsburgh PA)

    [36]

    Zhang X R, Gao C H, Wu L Q, Tang H S 2010 Acta Phys. Sin. 59 5249 (in Chinese) [张秀荣, 高从花, 吴礼清, 唐会帅 2010 59 5249]

    [37]

    Qian S, Guo Xin L, Wang J J, Yu X Q, Wu S X, Yu J 2013 Acta Phys. Sin. 62 057803 (in Chinese)[钱帅, 郭新立, 王家佳, 余新泉, 吴三械, 于金 2013 62 057803]

  • [1]

    Efremenko I, Sheintuch M 1998 Surf. Sci. 414 148

    [2]

    Karabacak M, Ozcelik S, Gvenc Z B 2002 Surf. Sci. 507 636

    [3]

    Kruger S, Vent S, Ncörtemann F, Staufer M 2001 J. Chem. Phys. 115 2082

    [4]

    Schebarchov D, Hendy S C 2006 Phys. Rev. B 73 121402

    [5]

    Sampedro B, Crespo P, Hernando A 2003 Phys. Rev. Lett. 91 237203

    [6]

    Shinohara T, Sato T, Taniyama T 2003 Phys. Rev. Lett. 91 197201

    [7]

    Lee K 1998 Phys. Rev. B 58 2391

    [8]

    Moseler M, Häkkinen H, Barnett R N 2001 Phys. Rev. Lett. 86 2545

    [9]

    Kumar V, Kawazoe Y 2002 Phys. Rev. B 66 144413

    [10]

    Barretau C, Guirado-López R, Spanjaard D 2000 Phys. Rev. B 61 7781

    [11]

    Guo J J, Yang J X, Die D, Yu G F, Jiang G 2005 Acta Phys. Sin. 54 3571 (in Chinese) [郭建军, 杨继先, 迭东, 于桂凤, 蒋刚 2005 54 3571]

    [12]

    Fang F, Jiang G, Wang H Y 2006 Acta Phys. Sin. 55 2241 (in Chinese) [方芳, 蒋刚, 王红艳 2006 55 2241]

    [13]

    Zhao K, Zhang K, Wang J J, Yu J, Wu S X 2013 Acta Phys. Sin. 62 127101 (in Chinese) [赵昆, 张坤, 王家佳, 于金, 吴三械 2013 62 127101]

    [14]

    Wen J Q, Zhou H, Zhang C J, Wang J F 2013 Chin. J. Comp. Phys. 30 596 (in Chinese) [温俊青, 周红, 张陈俊, 王俊锋 2013 计算物理 30 596]

    [15]

    Ge G X, Tang G H, Jing Q, Luo Y H 2009 Acta. Phys. Chim. Sin. 25 1195 (in Chinese) [葛桂贤, 唐光辉, 井群, 罗有华 2009 物理化学学报 25 1195]

    [16]

    Jin R, Chen X H 2010 Acta Phys. Sin. 59 6955 (in Chinese) [金蓉, 谌晓洪 2010 59 6955]

    [17]

    Zhu J, Jin R 2008 J. At. Mol. Phys. 25 1328 (in Chinese) [朱俊, 金蓉 2008 原子与分子 25 1328]

    [18]

    Koyasu K, Mitsui M, Nakajima A 2002 Chem. Phys. Lett. 358 224

    [19]

    Guo J J, Yang J X, Die D 2005 Physica B 367 158

    [20]

    Guo J J, Shi J, Yang J X 2007 Physica B 393 363

    [21]

    Arratia P R, Hern A L 1999 Chem. Phys. Lett. 303 641

    [22]

    Kilimis D A, Papageorgiou D G 2010 J. Mol. Struct. (Theochem.) 939 112

    [23]

    Efremenko I, Sheintuch M 2005 Chem. Phys. Lett. 401 232

    [24]

    Tang C M, Chen S W, Zhu W H, Tao C J, Zhang A M, Gong J F, Zou H, Liu M Y, Zhu F 2012 Chin. Phys. B 21 117101

    [25]

    L J, Qin J P, Wu H S 2014 Acta Phys. Sin. 63 053101 (in Chinese) [吕瑾, 秦键萍, 武海顺 2014 63 053101]

    [26]

    Wen J Q, Jiang Z Y, Li J Q, Cao L K, Chu S Y 2010 Int. J. Quan. Chem. 110 1368

    [27]

    Wen J Q, Jiang Z Y, Hou Y Q, Li J Q, Chu S Y 2010 J. Mol. Struct. (Theochem.) 949 91

    [28]

    Zhao G F, Zhang J, Jing Q 2007 J. Chem. Phys. 127 234312

    [29]

    Xiang J, Wei S H, Yan X H, You J Q, Mao Y L 2004 J. Chem. Phys. 120 4251

    [30]

    Guo L 2009 Comp. Mater. Sci. 45 951

    [31]

    Gu J B, Yang X D, Wang H Q, Li H F 2012 Chin. Phys. B 21 043102 (in Chinese)[顾建兵, 杨向东, 王怀谦, 李慧芳 2012 中国物理 21 043102]

    [32]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864

    [33]

    Adamo C, Barone V 1998 J. Chem. Phys. 108 664

    [34]

    Hay P J, Wadt W R 1985 J. Chem. Phys. 82 270

    [35]

    Frisch M J, Trucks G W, Schlegel H B 2003 GAUSSIAN 03 (Revision A. 1) (Gaussian Inc., Pittsburgh PA)

    [36]

    Zhang X R, Gao C H, Wu L Q, Tang H S 2010 Acta Phys. Sin. 59 5249 (in Chinese) [张秀荣, 高从花, 吴礼清, 唐会帅 2010 59 5249]

    [37]

    Qian S, Guo Xin L, Wang J J, Yu X Q, Wu S X, Yu J 2013 Acta Phys. Sin. 62 057803 (in Chinese)[钱帅, 郭新立, 王家佳, 余新泉, 吴三械, 于金 2013 62 057803]

  • [1] 许思维, 王训四, 沈祥. 结合高分辨率X射线光电子能谱和拉曼散射研究GexGa8S92–x玻璃结构.  , 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] 杨雪, 丁大军, 胡湛, 赵国明. 中性和阳离子丁酮团簇的结构及稳定性的理论研究.  , 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [4] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究.  , 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [5] 陈泽章. 太赫兹波段液晶分子极化率的理论研究.  , 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [6] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究.  , 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [7] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究.  , 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [8] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究.  , 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [9] 张秀荣, 李扬, 杨星. WnNim(n+m=8)团簇结构与电子性质的理论研究.  , 2011, 60(10): 103601. doi: 10.7498/aps.60.103601
    [10] 孙路石, 张安超, 向军, 郭培红, 刘志超, 苏胜. 密度泛函理论研究Hg与Auqn(n=1—6, q=0,+1,-1) 团簇的相互作用.  , 2011, 60(7): 073103. doi: 10.7498/aps.60.073103
    [11] 郭钊, 陆斌, 蒋雪, 赵纪军. 幻数尺寸Li-n-1,Lin,Li+ n+1(n=20,40)团簇的几何结构、电子与光学性质的第一性原理研究.  , 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [12] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究.  , 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [13] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究.  , 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究.  , 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [15] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质.  , 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [16] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性.  , 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [17] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究.  , 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 蒲忠胜. (Li3N)n(n=1—5)团簇结构与性质的密度泛函研究.  , 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [19] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究.  , 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [20] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究.  , 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
计量
  • 文章访问数:  5845
  • PDF下载量:  442
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-06
  • 修回日期:  2014-02-26
  • 刊出日期:  2014-06-05

/

返回文章
返回
Baidu
map