-
通过在Co82Zr18合金中添加过渡族元素Cr的方法,利用快淬工艺,制备出了Co82-xZr18Crx(x=0,2,3,4)快淬合金薄带. 利用磁性测量、X光衍射、热磁分析、扫描电子显微镜,对其磁性能、相组成、微结构进行了研究. 实验结果表明,在Co82Zr18合金中添加少量的Cr 可以使其矫顽力(iHc)显著提高. 其中,Co79Zr18Cr3 快淬薄带经600 ℃退火处理后iHc=6.5 kOe. 相分析发现,600 ℃退火后的Co79Zr18Cr3快淬薄带由单一Co11Zr2 相组成,Cr原子进入到了Co11Zr2相的晶格之中替换了原子半径相对较小的Co原子,这导致了Co11Zr2居里温度(TC)的降低却使其磁晶各向异性场(Ha)显著提高;另一方面,通过微结构研究发现,未退火的Co79Zr18Cr3快淬薄带由5080 nm 的等轴晶粒组成. 经600 ℃退火后,其晶粒形态并未发生改变然而晶粒尺寸却增长到400500 nm.
-
关键词:
- Co-Zr-Cr合金薄带 /
- 矫顽力 /
- Co11Zr2相 /
- 热处理
The Co82-xZr18Crx (x=0, 2, 3, 4) alloys are produced by melt-spinning. It is found that a proper addition of Cr can improve the coercivity significantly and a maximum coercivity of 6.5 kOe is obtained in the Co79Zr18Cr3 ribbon after having been annealed at 600 ℃. X-ray diffraction and thermomagnetic analysis are employed to determine its phase composition. It is found that the sample is comprised of the single Co11Zr2 and the Cr atoms enter into its lattice. A significant enhancement in the magnetocrystalline anisotropy field of Co11Zr2 is observed. SEM investigations show a microstructure consisting of equiaxed grains whose average size is about 400-500 nm. The coercivity enhancement in the Co79Zr18Cr3 alloy is ascribed to the increase in Ha.-
Keywords:
- Co-Zr-Cr melt-spun ribbons /
- coercivity /
- Co11Zr2 phase /
- heat treatment
[1] Akdogan O, Li W F, Hadjipanayis G C 2012 J. Nanopart. Res. 14 891
[2] [3] Stone R 2009 Science 325 1336
[4] [5] Sun W, Zhu M G, Fang Y K, Pan W, Li J J, Li Y F, Li W 2012 Rare Metals 31 470
[6] Saito T 2003 Appl. Phys. Lett. 82 2305
[7] [8] [9] Gao C, Wan H, Hadjipanayis G C 1990 J. Appl. Phys. 67 4960
[10] Gabay A M, Zhang Y, Hadjipanayis G C 2001 J. Magn. Magn. Mater. 236 37
[11] [12] Ishikawa T, Ohmori K 1990 IEEE Trans. Magn. 26 1370
[13] [14] [15] Demczyk B G, Cheng S F 1991 J. Appl. Cryst. 24 1023
[16] [17] Ivanova G V, Shchegoleva N N, Gabay A M 2007 J. Alloys. Compd. 432 135
[18] Saito T 2003 IEEE Trans. Magn. 39 2890
[19] [20] [21] Hou Z P, Su F, Xu S F, Zhang J B, Wu C J, Liu D, Wei B P, Wang W Q 2013 J. Magn. Magn. Mater. 346 124
[22] Zhang W Y, Valloppilly S R, Li X Z, Skomski R, Shield J E, Sellmyer D J 2012 IEEE Trans. Magn. 48 3603
[23] [24] [25] Wang W Q, Wang J L, Tang N, Bao F Q, Wu G H, Yang F M, Jin H M 2001 Acta Phys. Sin. 50 1534 (in Chinese) [王文全, 王建立, 唐宁, 包富泉, 吴光恒, 杨伏明, 金汉民 2001 50 1534]
[26] Yang D, Wang J L, Tang N, Shen Y P, Yang F M 1999 Acta Phys. Sin. 48 80 (in Chinese) [阳东, 王建立, 唐宁, 沈宇平, 杨伏明 1999 48 80]
[27] [28] Gabay A M, Shchegoleva N N, Gaviko V S, Ivanova G V 2003 Phys. Metals Metallography 95 122
[29] [30] [31] Shen B G, Yang L Y, Cao L, Guo H Q 1993 J. Appl. Phys. 73 5932
[32] Hou Z P, Xu S F, Zhang J B, Wu C J, Liu D, Su F, Wang W Q 2013 J. Alloys. Compd. 555 28
[33] [34] [35] Zhang H W, Rong C B, Du X B, Zhang J, Zhang S Y, Shen B G 2003 Appl. Phys. Lett. 82 4098
[36] [37] Zhang H W, Rong C B, Zhang S Y, Shen B G 2004 Acta Phys. Sin. 53 4347 (in Chinese) [张宏伟, 荣传兵, 张绍英, 沈宝根 2004 53 4347]
[38] Herzer G1989 IEEE Trans. Magn. 25 3327
[39] [40] [41] Chen R J, Zhang H W, Shen B G, Yan A R, Chen L D 2009 Chin. Phys. B 18 2582
[42] Gong Y M, Lan Z H, Yan Y, Du X B, Wang W Q, Wang X F, Su F, Lu L, Zhang Z S, Jin H M, Wen G H 2008 Chin. Phys. B 17 1130
[43] -
[1] Akdogan O, Li W F, Hadjipanayis G C 2012 J. Nanopart. Res. 14 891
[2] [3] Stone R 2009 Science 325 1336
[4] [5] Sun W, Zhu M G, Fang Y K, Pan W, Li J J, Li Y F, Li W 2012 Rare Metals 31 470
[6] Saito T 2003 Appl. Phys. Lett. 82 2305
[7] [8] [9] Gao C, Wan H, Hadjipanayis G C 1990 J. Appl. Phys. 67 4960
[10] Gabay A M, Zhang Y, Hadjipanayis G C 2001 J. Magn. Magn. Mater. 236 37
[11] [12] Ishikawa T, Ohmori K 1990 IEEE Trans. Magn. 26 1370
[13] [14] [15] Demczyk B G, Cheng S F 1991 J. Appl. Cryst. 24 1023
[16] [17] Ivanova G V, Shchegoleva N N, Gabay A M 2007 J. Alloys. Compd. 432 135
[18] Saito T 2003 IEEE Trans. Magn. 39 2890
[19] [20] [21] Hou Z P, Su F, Xu S F, Zhang J B, Wu C J, Liu D, Wei B P, Wang W Q 2013 J. Magn. Magn. Mater. 346 124
[22] Zhang W Y, Valloppilly S R, Li X Z, Skomski R, Shield J E, Sellmyer D J 2012 IEEE Trans. Magn. 48 3603
[23] [24] [25] Wang W Q, Wang J L, Tang N, Bao F Q, Wu G H, Yang F M, Jin H M 2001 Acta Phys. Sin. 50 1534 (in Chinese) [王文全, 王建立, 唐宁, 包富泉, 吴光恒, 杨伏明, 金汉民 2001 50 1534]
[26] Yang D, Wang J L, Tang N, Shen Y P, Yang F M 1999 Acta Phys. Sin. 48 80 (in Chinese) [阳东, 王建立, 唐宁, 沈宇平, 杨伏明 1999 48 80]
[27] [28] Gabay A M, Shchegoleva N N, Gaviko V S, Ivanova G V 2003 Phys. Metals Metallography 95 122
[29] [30] [31] Shen B G, Yang L Y, Cao L, Guo H Q 1993 J. Appl. Phys. 73 5932
[32] Hou Z P, Xu S F, Zhang J B, Wu C J, Liu D, Su F, Wang W Q 2013 J. Alloys. Compd. 555 28
[33] [34] [35] Zhang H W, Rong C B, Du X B, Zhang J, Zhang S Y, Shen B G 2003 Appl. Phys. Lett. 82 4098
[36] [37] Zhang H W, Rong C B, Zhang S Y, Shen B G 2004 Acta Phys. Sin. 53 4347 (in Chinese) [张宏伟, 荣传兵, 张绍英, 沈宝根 2004 53 4347]
[38] Herzer G1989 IEEE Trans. Magn. 25 3327
[39] [40] [41] Chen R J, Zhang H W, Shen B G, Yan A R, Chen L D 2009 Chin. Phys. B 18 2582
[42] Gong Y M, Lan Z H, Yan Y, Du X B, Wang W Q, Wang X F, Su F, Lu L, Zhang Z S, Jin H M, Wen G H 2008 Chin. Phys. B 17 1130
[43]
计量
- 文章访问数: 5948
- PDF下载量: 329
- 被引次数: 0