搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

失谐对耗散耦合腔阵列体系超流-绝缘相变的影响

鲍佳 谭磊

引用本文:
Citation:

失谐对耗散耦合腔阵列体系超流-绝缘相变的影响

鲍佳, 谭磊

The influences of detuning on the duperfluid-nsulator phase transition in coupled dissipative cavity arrays

Bao Jia, Tan Lei
PDF
导出引用
  • 利用平均场理论和微扰论解析求解了失谐存在且环境作用下Jaynes-Cummings-Hubbard 模型的哈密顿量,得到了体系序参量的解析表达式,并讨论了失谐对体系超流-绝缘相变的影响. 研究结果表明:调节失谐可以改变腔间的有效排斥势和系统的临界隧穿率,实现系统在超流态和绝缘态之间转变. 结合耗散耦合腔阵列的输运性质探讨了失谐对序参量取值的影响,结果显示:沿失谐负支随着失谐的增大,序参量会经历先增后减的变化.
    In this paper, based on the effective Jaynes-Cummings-Hubbard model Hamiltonian in the presence of detuning, we use the mean-field and the perturbation theory to figure out the superfluid order parameter of the system. By which we find that detuning from resonance allows one to drive the system from the superfluid into the insulator state of the polaritons and the reverse. In addition, combining with the properties of transportation of coupled dissipative cavity arrays with detuning, we discuss the influence of detuning on the number of superfluid polaritons and the lifetime of superfluid states. It suggests that the number of the superfluid polaritons will increase to its maximum and then reduce again along the negative part of detuning, which is similar to the spectrum of the transmission.
    • 基金项目: 国家自然科学基金(批准号:11274148)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274148).
    [1]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [2]

    Mabuchi H, Doherty A C 2002 Science 298 1372

    [3]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [4]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [5]

    Xia F, Sekaric L, Vlasov Y 2007 Nature Photon. 1 65

    [6]

    Notomi M, Kuramochi E, Tanabe T 2008 Nature Photon. 2 741

    [7]

    Hartmann M J, Brandao F G S L, Plenio M B 2008 Laser Photon. Rev. 2 527

    [8]

    Greentree A D, Tahan C, Cole J H, Hollenberg L C L 2006 Nat. Phys. 2 856

    [9]

    Hartmann M J, Brandao F G S L, Plenio M B 2006 Nat. Phys. 2 849

    [10]

    Schmidt S, Blatter G 2009 Phys. Rev. Lett. 103 086403

    [11]

    Diehl S, Micheli A, Kantian A, Kraus B, Bchler H P, Zoller P 2008 Nat. Phys. 4 878

    [12]

    Gerace D, Treci H E, Imamolu A, Giovannetti V, Fazio R 2009 Nat. Phys. 5 281

    [13]

    Karasik R I, Wiseman H M 2011 Phys. Rev. Lett. 106 020406

    [14]

    Hur K L 2008 Ann. Phys. (NY) 323 2208

    [15]

    Leib M, Hartmann M J 2010 New J. Phys. 12 093031

    [16]

    Knap M, Arrigoni E, von der Linden W, Cole J H 2011 Phys. Rev. A 83 023821

    [17]

    Nissen F, Schmidt S, Biondi M, Blatter G, Treci H E, Keeling J 2012 Phys. Rev. Lett. 108 233603

    [18]

    Carusotto I, Gerace D, Tureci H E, De Liberato S, Ciuti C, Imamolu A 2009 Phys. Rev. Lett. 103 033601

    [19]

    D’Souza A G, Sanders B C, Feder D L 2013 Phys. Rev. A 88 063801

    [20]

    Hartmann M J 2010 Phys. Rev. Lett. 104 113601

    [21]

    Tomadin A, Giovannetti V, Fazio R, Gerace D, Carusotto I, Treci H E, Imamolu A 2010 Phys. Rev. A 81 061801(R)

    [22]

    Liu K, Tan L, L C H, Liu W M 2011 Phys. Rev. A 83 063840

    [23]

    Marcos D, Tomadin A, Diehl S, Rabl P 2012 New J. Phys. 14 055005

    [24]

    Schetakis N, Grujic T, Clark S, Jaksch D, Angelakis D G 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224025

    [25]

    Grujic T, Clark S R, Jaksch D, Angelakis D G 2013 Phys. Rev. A 87 053846

    [26]

    Grujic T, Clark S R, Jaksch D, Angelakis D G 2012 New J. Phys. 14 103025

    [27]

    Nissen F, Schmidt S, Biondi M, Blatter G, Treci H E, Keeling J 2012 Phys. Rev. Lett. 108 233603

    [28]

    Kulaitis G, Krger F, Nissen F, Keeling J 2013 Phys. Rev. A 87 013840

    [29]

    Toyoda K, Matsuno Y, Noguchi A, Haze S, Urabe S 2013 Phys. Rev. Lett. 111 160501

    [30]

    Valle E D, Hartmann M J 2013 J. Phys. B: At. Mol. Opt. Phys. 46224023

    [31]

    Tan L, Hai L 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035504

    [32]

    Hai L, Tan L, Feng J S, Bao J, L C H, Wang B 2013 Eur. Phys. J. D 67 173

    [33]

    Hai L, Tan L, Feng J S, Xu W B, Wang B 2014 Chin. Phys. B 23 024202

    [34]

    Zhou L, Liu Z J, Yan W B, Mu Q X 2011 Chin. Phys. B 20 074205

    [35]

    Imamo\=glu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467

    [36]

    Grangier P, Walls D F, Gher K M 1998 Phys. Rev. Lett. 81 2833

    [37]

    Imamo lu A, Schmidt H, Woods G, Deutsch M 1998 Phys. Rev. Lett. 81 2836

    [38]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [39]

    Du X Y, Zheng W H, Ren G, Wang K, Xing M X, Chen L H 2008 Acta Phys. Sin. 57 571 (in Chinese) [杜晓宇, 郑婉华, 任刚, 王科, 邢名欣, 陈良惠 2008 57 571]

    [40]

    Zhou L, Gong Z R, Liu Y X, Sun C P, Nori F 2008 Phys. Rev. Lett. 101 100501

    [41]

    Liao J Q, Gong Z R, Zhou L, Liu Y X, Sun C P, Nori F 2010 Phys. Rev. A 81 042304

    [42]

    Cheng M T, Song Y Y, Yu L B 2012 Chin. Phys. Lett. 29 054211

    [43]

    Gu L M 2012 Chin. Phys. Lett. 29 104206

  • [1]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [2]

    Mabuchi H, Doherty A C 2002 Science 298 1372

    [3]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [4]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [5]

    Xia F, Sekaric L, Vlasov Y 2007 Nature Photon. 1 65

    [6]

    Notomi M, Kuramochi E, Tanabe T 2008 Nature Photon. 2 741

    [7]

    Hartmann M J, Brandao F G S L, Plenio M B 2008 Laser Photon. Rev. 2 527

    [8]

    Greentree A D, Tahan C, Cole J H, Hollenberg L C L 2006 Nat. Phys. 2 856

    [9]

    Hartmann M J, Brandao F G S L, Plenio M B 2006 Nat. Phys. 2 849

    [10]

    Schmidt S, Blatter G 2009 Phys. Rev. Lett. 103 086403

    [11]

    Diehl S, Micheli A, Kantian A, Kraus B, Bchler H P, Zoller P 2008 Nat. Phys. 4 878

    [12]

    Gerace D, Treci H E, Imamolu A, Giovannetti V, Fazio R 2009 Nat. Phys. 5 281

    [13]

    Karasik R I, Wiseman H M 2011 Phys. Rev. Lett. 106 020406

    [14]

    Hur K L 2008 Ann. Phys. (NY) 323 2208

    [15]

    Leib M, Hartmann M J 2010 New J. Phys. 12 093031

    [16]

    Knap M, Arrigoni E, von der Linden W, Cole J H 2011 Phys. Rev. A 83 023821

    [17]

    Nissen F, Schmidt S, Biondi M, Blatter G, Treci H E, Keeling J 2012 Phys. Rev. Lett. 108 233603

    [18]

    Carusotto I, Gerace D, Tureci H E, De Liberato S, Ciuti C, Imamolu A 2009 Phys. Rev. Lett. 103 033601

    [19]

    D’Souza A G, Sanders B C, Feder D L 2013 Phys. Rev. A 88 063801

    [20]

    Hartmann M J 2010 Phys. Rev. Lett. 104 113601

    [21]

    Tomadin A, Giovannetti V, Fazio R, Gerace D, Carusotto I, Treci H E, Imamolu A 2010 Phys. Rev. A 81 061801(R)

    [22]

    Liu K, Tan L, L C H, Liu W M 2011 Phys. Rev. A 83 063840

    [23]

    Marcos D, Tomadin A, Diehl S, Rabl P 2012 New J. Phys. 14 055005

    [24]

    Schetakis N, Grujic T, Clark S, Jaksch D, Angelakis D G 2013 J. Phys. B: At. Mol. Opt. Phys. 46 224025

    [25]

    Grujic T, Clark S R, Jaksch D, Angelakis D G 2013 Phys. Rev. A 87 053846

    [26]

    Grujic T, Clark S R, Jaksch D, Angelakis D G 2012 New J. Phys. 14 103025

    [27]

    Nissen F, Schmidt S, Biondi M, Blatter G, Treci H E, Keeling J 2012 Phys. Rev. Lett. 108 233603

    [28]

    Kulaitis G, Krger F, Nissen F, Keeling J 2013 Phys. Rev. A 87 013840

    [29]

    Toyoda K, Matsuno Y, Noguchi A, Haze S, Urabe S 2013 Phys. Rev. Lett. 111 160501

    [30]

    Valle E D, Hartmann M J 2013 J. Phys. B: At. Mol. Opt. Phys. 46224023

    [31]

    Tan L, Hai L 2012 J. Phys. B: At. Mol. Opt. Phys. 45 035504

    [32]

    Hai L, Tan L, Feng J S, Bao J, L C H, Wang B 2013 Eur. Phys. J. D 67 173

    [33]

    Hai L, Tan L, Feng J S, Xu W B, Wang B 2014 Chin. Phys. B 23 024202

    [34]

    Zhou L, Liu Z J, Yan W B, Mu Q X 2011 Chin. Phys. B 20 074205

    [35]

    Imamo\=glu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467

    [36]

    Grangier P, Walls D F, Gher K M 1998 Phys. Rev. Lett. 81 2833

    [37]

    Imamo lu A, Schmidt H, Woods G, Deutsch M 1998 Phys. Rev. Lett. 81 2836

    [38]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87

    [39]

    Du X Y, Zheng W H, Ren G, Wang K, Xing M X, Chen L H 2008 Acta Phys. Sin. 57 571 (in Chinese) [杜晓宇, 郑婉华, 任刚, 王科, 邢名欣, 陈良惠 2008 57 571]

    [40]

    Zhou L, Gong Z R, Liu Y X, Sun C P, Nori F 2008 Phys. Rev. Lett. 101 100501

    [41]

    Liao J Q, Gong Z R, Zhou L, Liu Y X, Sun C P, Nori F 2010 Phys. Rev. A 81 042304

    [42]

    Cheng M T, Song Y Y, Yu L B 2012 Chin. Phys. Lett. 29 054211

    [43]

    Gu L M 2012 Chin. Phys. Lett. 29 104206

  • [1] 韩艳晨, 李昱东, 李维. 相干布居囚禁振荡与拉曼失谐的关系.  , 2024, 73(2): 024203. doi: 10.7498/aps.73.20231408
    [2] 朱明杰, 赵微, 王治海. 巨腔系统中的光子屏蔽.  , 2023, 72(9): 094202. doi: 10.7498/aps.72.20230049
    [3] 张利巍, 李贤丽, 杨柳. 蓝失谐驱动下双腔光力系统中的光学非互易性.  , 2019, 68(17): 170701. doi: 10.7498/aps.68.20190205
    [4] 海莲, 张莎, 李维银, 谭磊. 耦合腔阵列与-型三能级原子非局域耦合系统中单光子的传输特性研究.  , 2017, 66(15): 154203. doi: 10.7498/aps.66.154203
    [5] 石永强, 孔维龙, 吴仁存, 张文轩, 谭磊. 耗散耦合腔阵列耦合量子化腔场驱动三能级体系中的单光子输运.  , 2017, 66(5): 054204. doi: 10.7498/aps.66.054204
    [6] 熊芳, 冯晓强, 谭磊. 双光子过程耗散耦合腔阵列中的量子相变.  , 2016, 65(4): 044205. doi: 10.7498/aps.65.044205
    [7] 陈锟, 邓友金. 用量子蒙特卡罗方法研究二维超流-莫特绝缘体相变点附近的希格斯粒子.  , 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [8] 胡要花, 谭勇刚, 刘强. 强度相关耦合双Jaynes-Cummings模型中的纠缠和量子失谐.  , 2013, 62(7): 074202. doi: 10.7498/aps.62.074202
    [9] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用.  , 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [10] 卢道明. 三能级原子与耦合腔相互作用系统中的纠缠特性.  , 2012, 61(3): 030301. doi: 10.7498/aps.61.030301
    [11] 卢道明. 原子与耦合腔相互作用系统中的纠缠特性.  , 2011, 60(9): 090302. doi: 10.7498/aps.60.090302
    [12] 闵琦, 刘克. 失谐驻波管及其极高纯净驻波场性质的研究.  , 2011, 60(2): 024301. doi: 10.7498/aps.60.024301
    [13] 邱 鑫, 夏光琼, 吴加贵, 吴正茂. 基于频率失谐的光混沌同步开关的特性研究.  , 2008, 57(3): 1725-1729. doi: 10.7498/aps.57.1725
    [14] 常增光, 刘建成, 闫珂柱. 稳态V型和Λ型无粒子数反转激光增益的比较研究.  , 2008, 57(8): 4927-4932. doi: 10.7498/aps.57.4927
    [15] 杜晓宇, 郑婉华, 任 刚, 王 科, 邢名欣, 陈良惠. 二维光子晶体耦合腔阵列的慢波效应研究.  , 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [16] 黄善国, 顾畹仪, 马海强. 失谐对冷原子介质中光脉冲信息存储的影响.  , 2004, 53(12): 4211-4217. doi: 10.7498/aps.53.4211
    [17] 宋克慧, 郭光灿. 通过大失谐Jaynes-Cummings模型实现类自旋的腔场GHZ态.  , 1999, 48(4): 661-666. doi: 10.7498/aps.48.661
    [18] 罗振飞, 徐至展, 陈荣清. 电磁引起透明:强信号、反对称失谐情形.  , 1994, 43(3): 389-394. doi: 10.7498/aps.43.389
    [19] 赛·萨楚尔夫, 胡岗, 杨国健. 良腔情况失谐双光子注入信号激光系统的压缩效应.  , 1992, 41(8): 1261-1268. doi: 10.7498/aps.41.1261
    [20] 赛·萨楚尔夫, 胡岗. 劣腔情况失谐双光子光学双稳系统的原子压缩效应.  , 1992, 41(4): 578-586. doi: 10.7498/aps.41.578
计量
  • 文章访问数:  5749
  • PDF下载量:  458
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-21
  • 修回日期:  2014-01-18
  • 刊出日期:  2014-04-05

/

返回文章
返回
Baidu
map