-
真空环境不仅会导致热电偶等温度传感器表面材料解吸,而且其传热机理也与常压不同,因此采用常压下校准和溯源的温度传感器测量真空环境下气体温度存在诸多不确定性问题. 为此,本文利用可调谐二极管激光吸收光谱技术(TDLAS)测量真空环境下气体温度,探索TDLAS温度测量技术在真空环境下的应用前景. 在模拟热真空实验过程中,首先将真空气室浸没于恒温槽中,然后利用TDLAS测量真空气室中气体温度,同时利用一等标准铂电阻测量恒温槽的温度. 试验结果表明:TDLAS和一等标准铂电阻测量得到的气体温度和恒温槽温度具有高度的一致性,两者之间的误差在恒温槽温度稳定时不超过0.2℃.
-
关键词:
- 可调谐二极管激光吸收光谱 /
- 温度测量 /
- 真空环境 /
- 波长调制法
Measuring the temperature in vacuum environment is more complex than in atmospheric environment. For example, high vacuum will cause the thermocouple sensor surface desorption, and the mechanism of heat transfer is also different. Therefore, there are some uncertainties if the thermocouple is used to measure the gas temperature in vacuum condition. In the present paper, tunable diode laser absorption spectroscopy (TDLAS) is employed to measure the gas temperature and also explore the application prospect of TDLAS temperature measurement technology in vacuum environment. During the thermal vacuum experiments, the vacuum gas cell is immersed in the thermostatic bath, and the gas temperature is determined by TDLAS. Meanwhile, a standard Pt-resistance is used to measure the thermostatic bath temperature. The results show that the temperatures of the gas and thermostatic bath are highly consistent with each other, and the difference between the two temperatures is less than 0.2 ℃ when the thermostatic bath is stable.-
Keywords:
- tunable diode laser absorption spectroscopy /
- temperature measurement /
- vacuum environment /
- wavelength modulation spectroscopy
[1] Nabil M, Khodadadi J M 2013 Int. J. Heat Mass Trans. 67 301
[2] Çakmak H M, Çetinkara H A, Kahraman S, Bayansal F, Tepe M, Gder H S, Çipiloğlu M A 2012 Superlattice Microst. 51 421
[3] Zhou H J, Chen X M, Yang B, Li L, Dai Y N 2012 Chin. J. Vacuum Sci. Technol. 32 896 (in Chinese) [周厚军, 陈秀敏, 杨斌, 李亮, 戴永年 2012 真空科学与技术学报 32 896]
[4] Lin M Y, Chen E T, Zhou B, Xu B 2006 Chin. J. Va-cuum Sci. Technol. 26 530 (in Chinese) [林美英, 陈儿同, 周冰, 徐波 2006 真空科学与技术学报 26 530]
[5] Liu R, Zhou Z N, Yin Y L, Yang L, Zhang T L 2012 Thermochim. Acta 537 13
[6] Liu Q 2006 Vacuum Cryogenic 12 238 (in Chinese) [刘强 2006 真空与低温 12 238]
[7] Guo G 2009 Spacecraft Environment Engineering 26 33 (in Chinese) [郭赣 2009 航天器环境工程 26 33]
[8] Peng Z M, Ding Y J, Zhai X D 2011 Acta Phys. Sin. 60 104702 (in Chinese) [彭志敏, 丁艳军, 翟晓东 2011 60 104702]
[9] Peng Z M, Ding Y J, Zhai X D, Yang Q S, Jiang Z L 2011 Chin. Phys. Lett. 28 044703
[10] Cai T D, Jia H, Wang G S, Chen W D, Gao X M 2009 Sensor Actuat. A: Phys. 152 5
[11] Farooq A, Jeffries J B, Hanson R K 2009 Appl. Phys. B 96 161
[12] Teichert H, Fernholz T, Ebert V 2003 Appl. Opt. 42 2043
[13] Li F, Yu X L, Gu H B, Li Z, Zhao Y, Ma L, Chen L H, Zhang X Y 2011 Appl. Opt. 50 6697
[14] Liu X, Jeffries J B, Hanson R K, Hinckley K M, Woodmansee M A 2006 Appl. Phys. B 82 469
[15] Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 54 1927]
[16] Farooq A, Jeffries J B, Hanson R K 2008 Appl. Phys. B 90 619
[17] Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546
[18] Peng Z M, Ding Y J, Che L, Yang Q S 2012 Opt. Express 20 11976
[19] Che L, Ding Y J, Peng Z M, Li X H 2012 Chin. Phys. B 21 127803
[20] Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503
[21] Peng Z M, Ding Y J, Che L, Li X H, Zheng K J 2011 Opt. Express 19 23104
-
[1] Nabil M, Khodadadi J M 2013 Int. J. Heat Mass Trans. 67 301
[2] Çakmak H M, Çetinkara H A, Kahraman S, Bayansal F, Tepe M, Gder H S, Çipiloğlu M A 2012 Superlattice Microst. 51 421
[3] Zhou H J, Chen X M, Yang B, Li L, Dai Y N 2012 Chin. J. Vacuum Sci. Technol. 32 896 (in Chinese) [周厚军, 陈秀敏, 杨斌, 李亮, 戴永年 2012 真空科学与技术学报 32 896]
[4] Lin M Y, Chen E T, Zhou B, Xu B 2006 Chin. J. Va-cuum Sci. Technol. 26 530 (in Chinese) [林美英, 陈儿同, 周冰, 徐波 2006 真空科学与技术学报 26 530]
[5] Liu R, Zhou Z N, Yin Y L, Yang L, Zhang T L 2012 Thermochim. Acta 537 13
[6] Liu Q 2006 Vacuum Cryogenic 12 238 (in Chinese) [刘强 2006 真空与低温 12 238]
[7] Guo G 2009 Spacecraft Environment Engineering 26 33 (in Chinese) [郭赣 2009 航天器环境工程 26 33]
[8] Peng Z M, Ding Y J, Zhai X D 2011 Acta Phys. Sin. 60 104702 (in Chinese) [彭志敏, 丁艳军, 翟晓东 2011 60 104702]
[9] Peng Z M, Ding Y J, Zhai X D, Yang Q S, Jiang Z L 2011 Chin. Phys. Lett. 28 044703
[10] Cai T D, Jia H, Wang G S, Chen W D, Gao X M 2009 Sensor Actuat. A: Phys. 152 5
[11] Farooq A, Jeffries J B, Hanson R K 2009 Appl. Phys. B 96 161
[12] Teichert H, Fernholz T, Ebert V 2003 Appl. Opt. 42 2043
[13] Li F, Yu X L, Gu H B, Li Z, Zhao Y, Ma L, Chen L H, Zhang X Y 2011 Appl. Opt. 50 6697
[14] Liu X, Jeffries J B, Hanson R K, Hinckley K M, Woodmansee M A 2006 Appl. Phys. B 82 469
[15] Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 54 1927]
[16] Farooq A, Jeffries J B, Hanson R K 2008 Appl. Phys. B 90 619
[17] Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 5546
[18] Peng Z M, Ding Y J, Che L, Yang Q S 2012 Opt. Express 20 11976
[19] Che L, Ding Y J, Peng Z M, Li X H 2012 Chin. Phys. B 21 127803
[20] Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503
[21] Peng Z M, Ding Y J, Che L, Li X H, Zheng K J 2011 Opt. Express 19 23104
计量
- 文章访问数: 7481
- PDF下载量: 597
- 被引次数: 0