搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

封装进过渡金属原子的单壁碳纳米管:密度泛函理论研究

刘曼 闫强 周丽萍 韩琴

引用本文:
Citation:

封装进过渡金属原子的单壁碳纳米管:密度泛函理论研究

刘曼, 闫强, 周丽萍, 韩琴

Transition metals encapsulated inside single wall carbon nanotubes:DFT calculations

Liu Man, Yan Qiang, Zhou Li-Ping, Han Qin
PDF
导出引用
  • 运用基于第一性原理的密度泛函理论(DFT)的非平衡格林函数(NEGF)方法对过渡金属原子嵌入后的单壁碳纳米管(SWCNT)的电子输运性质进行了研究. 构建并优化不同过渡金属原子填充进不同类型碳纳米管的模型,研究其对应的电荷和自旋传输性质. 发现所有体系都在费米面附近出现自旋相关的电导下降峰,数值为一个量子电导(2e2/h). 碳管内封装两个铁原子的体系,磁性状态的改变导致不同的电输运行为,这一性质提供了新的有前景的方法来检测原子尺度上的磁特性.
    The transport properties of a single wall carbon tube with transition metal atoms embedded in it are studied by using the first principles method based on the density functional theory and the nonequilibrium Green’s function. Different transition metal atoms filled in the carbon tube are investigated, and the respective charge and spin transport properties are studied. The conductance of the nanotube is found to be distinctive for different metal elements encapsulated, and quantized reductions of conductance can be seen by a quantum unit (2e2/h). In particular, nanotubes with two iron atoms encapsulated in display different I-V curves when the spins of the two iron atoms are in parallel and antiparallel states respectively. These results can be explained by spin-dependent scattering and charge transfer. The encapsulation may tailor the doping and add magnetic behavior to the carbon nanotubes, which would provide a new and promising approach to detect nanoscale magnetic activity.
    • 基金项目: 国家自然科学基金(批准号.11274238,11104197)和江苏省高校“青蓝工程”资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274238, 11104197), and the Qing Lan Project of Jiangsu Higher Education Institutions.
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Kong J, Yenilmez E, Tombler T W, Kim W, Dai H 2001 Phys. Rev. Lett. 87 106801

    [3]

    Jiang J, Dong J, Xing D Y 2003 Phys. Rev. Lett. 91 056802

    [4]

    Yang L F, Chen J W, Yang H T, Dong J M 2004 Phys. Rev. B 69 153407

    [5]

    Li R, Hu Y Z, Wang H, Zhang Y J 2008 Chin. Phys. B 17 4253

    [6]

    Huffman D R 1991 Phys. Today 44 22

    [7]

    Saito R, Dresselhuas M S, Dresselhuas G 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) pp35-123

    [8]

    Zeng H, Hu H F, Wei J W, Xie F, Peng P 2006 Acta Phys. Sin. 55 4822 (in Chinese) [曾晖, 胡慧芳, 韦建卫, 谢芳, 彭平2006 55 4822]

    [9]

    Peng S, Cho K 2003 Nano Lett. 3 513

    [10]

    Ni M Y, Wang X L, Zeng Z 2009 Chin. Phys. B 18 357

    [11]

    Zhang L J, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin. 59 527 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤2010 59 527]

    [12]

    García-Suárez V M, Ferrer J, Lambert C J 2006 Phys. Rev. Lett. 96 106804

    [13]

    Wang S F, Chen L Y, Zhang Y, Zhang J M, Xu K W 2010 Journal of Molecular Structure: Theochem. 962 108

    [14]

    Smeu M, Zahid F, Jaidann M, Abou-Rachid H 2011 J. Phys. Chem. C 115 10985

    [15]

    Xie Y, Zhang J M 2011 The European Physical Journal B 81 459

    [16]

    Diniz E M, Nunes R W, Chacham H, Mazzoni M S C 2010 Physical Review. B 81 153413

    [17]

    Wang L G, Zhang H Y, Wang C, Terence K S W 2010 Acta Phys. Sin. 59 536 (in Chinese)[王利光, 张鸿宇, 王畅Terence K S W 2010 59 536]

    [18]

    Li S L, Zhang J M 2011 Acta Phys. Sin. 60 078801 (in Chinese)[李姝丽, 张建民2011 60 078801]

    [19]

    Fan B B, Wang L N, Wen H J, Guan L, Wang H L, Zhang R 2011 Acta Phys. Sin. 60 012101 (in Chinese)[范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐2011 60 012101]

    [20]

    Xie Y, Zhang J M 2011 Chin. Phys. B 20 127302

    [21]

    Zhou LP, Yang SW, Ng MF, Sullivan MB, Tan VB, Shen L 2008 Journal of the American Chemical Society 130 4023

    [22]

    Wang L G, Tagami K, Tsukada M 2003 A. Jpn. Phys. Soc. 58 7852786

    [23]

    Tagami K, Wang L G, Tsukada M 2004 Nano Lett. 4 209

    [24]

    Damle P S, Gosh A W, Datta S 2001 Phys. Rev. B 64 201403

    [25]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge:Cambridge University Press) p20

    [26]

    Perder J P, Zunger A 1981 Phys. Rev. B 23 5048

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Kong J, Yenilmez E, Tombler T W, Kim W, Dai H 2001 Phys. Rev. Lett. 87 106801

    [3]

    Jiang J, Dong J, Xing D Y 2003 Phys. Rev. Lett. 91 056802

    [4]

    Yang L F, Chen J W, Yang H T, Dong J M 2004 Phys. Rev. B 69 153407

    [5]

    Li R, Hu Y Z, Wang H, Zhang Y J 2008 Chin. Phys. B 17 4253

    [6]

    Huffman D R 1991 Phys. Today 44 22

    [7]

    Saito R, Dresselhuas M S, Dresselhuas G 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) pp35-123

    [8]

    Zeng H, Hu H F, Wei J W, Xie F, Peng P 2006 Acta Phys. Sin. 55 4822 (in Chinese) [曾晖, 胡慧芳, 韦建卫, 谢芳, 彭平2006 55 4822]

    [9]

    Peng S, Cho K 2003 Nano Lett. 3 513

    [10]

    Ni M Y, Wang X L, Zeng Z 2009 Chin. Phys. B 18 357

    [11]

    Zhang L J, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin. 59 527 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤2010 59 527]

    [12]

    García-Suárez V M, Ferrer J, Lambert C J 2006 Phys. Rev. Lett. 96 106804

    [13]

    Wang S F, Chen L Y, Zhang Y, Zhang J M, Xu K W 2010 Journal of Molecular Structure: Theochem. 962 108

    [14]

    Smeu M, Zahid F, Jaidann M, Abou-Rachid H 2011 J. Phys. Chem. C 115 10985

    [15]

    Xie Y, Zhang J M 2011 The European Physical Journal B 81 459

    [16]

    Diniz E M, Nunes R W, Chacham H, Mazzoni M S C 2010 Physical Review. B 81 153413

    [17]

    Wang L G, Zhang H Y, Wang C, Terence K S W 2010 Acta Phys. Sin. 59 536 (in Chinese)[王利光, 张鸿宇, 王畅Terence K S W 2010 59 536]

    [18]

    Li S L, Zhang J M 2011 Acta Phys. Sin. 60 078801 (in Chinese)[李姝丽, 张建民2011 60 078801]

    [19]

    Fan B B, Wang L N, Wen H J, Guan L, Wang H L, Zhang R 2011 Acta Phys. Sin. 60 012101 (in Chinese)[范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐2011 60 012101]

    [20]

    Xie Y, Zhang J M 2011 Chin. Phys. B 20 127302

    [21]

    Zhou LP, Yang SW, Ng MF, Sullivan MB, Tan VB, Shen L 2008 Journal of the American Chemical Society 130 4023

    [22]

    Wang L G, Tagami K, Tsukada M 2003 A. Jpn. Phys. Soc. 58 7852786

    [23]

    Tagami K, Wang L G, Tsukada M 2004 Nano Lett. 4 209

    [24]

    Damle P S, Gosh A W, Datta S 2001 Phys. Rev. B 64 201403

    [25]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge:Cambridge University Press) p20

    [26]

    Perder J P, Zunger A 1981 Phys. Rev. B 23 5048

  • [1] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟.  , 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [2] 加孜拉·哈赛恩, 朱恪嘉, 孙飞, 吴艳玲, 石友国, 赵继民. 三重简并拓扑半金属MoP中超快圆偏振光产生和调控光生热电流.  , 2020, 69(20): 207801. doi: 10.7498/aps.69.20200031
    [3] 梁世恒, 陆沅, 韩秀峰. 自旋发光二极管研究进展.  , 2020, 69(20): 208501. doi: 10.7498/aps.69.20200866
    [4] 韩佳凝, 范志强, 张振华. Fe3GeTe2纳米带的结构稳定性、磁电子性质及调控效应.  , 2019, 68(20): 208502. doi: 10.7498/aps.68.20191103
    [5] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化.  , 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [6] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究.  , 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [7] 伊丁, 武镇, 杨柳, 戴瑛, 解士杰. 有机分子在铁磁界面处的自旋极化研究.  , 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [8] 郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤. 氢化铁的自旋极化效应及势能函数.  , 2014, 63(21): 213101. doi: 10.7498/aps.63.213101
    [9] 王鼎, 张振华, 邓小清, 范志强. BN链掺杂的石墨烯纳米带的电学及磁学特性.  , 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [10] 李姝丽, 张建民. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算.  , 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [11] 张建东, 杨春, 陈元涛, 张变霞, 邵文英. 金原子掺杂的碳纳米管吸附CO气体的密度泛函理论研究.  , 2011, 60(10): 106102. doi: 10.7498/aps.60.106102
    [12] 黎欢, 郭卫. 自旋极化对Kondo系统基态的影响.  , 2010, 59(10): 7320-7326. doi: 10.7498/aps.59.7320
    [13] 王利光, 张鸿宇, 王畅, Terence K. S. W.. 嵌入锂原子的zigzag型单壁碳纳米管的电子传导特性.  , 2010, 59(1): 536-540. doi: 10.7498/aps.59.536
    [14] 陈华, 杜磊, 庄奕琪, 牛文娟. Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究.  , 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [15] 张变霞, 杨春, 冯玉芳, 余毅. 碳纳米管吸附铜原子的密度泛函理论研究.  , 2009, 58(6): 4066-4071. doi: 10.7498/aps.58.4066
    [16] 柏 鑫, 王鸣生, 刘 洋, 张耿民, 张兆祥, 赵兴钰, 郭等柱, 薛增泉. 碳纳米管端口的场蒸发.  , 2008, 57(7): 4596-4601. doi: 10.7498/aps.57.4596
    [17] 滕利华, 余华梁, 黄志凌, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化对电子复合动力学的影响研究.  , 2008, 57(10): 6593-6597. doi: 10.7498/aps.57.6593
    [18] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响.  , 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [19] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究.  , 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究.  , 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  6613
  • PDF下载量:  683
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-05
  • 修回日期:  2013-12-26
  • 刊出日期:  2014-04-05

/

返回文章
返回
Baidu
map