-
The first-principles calculations based on the density functional theory have been performed to investigate the doping behaviors of Na and F dopants in ZnO. It turns out from the calculated results of the band structure, density of states, and effective masses that in the F mono-doping case, the impurity states are localized and the formation energy is up as high as 4.59 eV. In the Na mono-doping case, the impurity states are delocalized and the formation energy decreases as low as -3.01 eV. One cannot obtain p-type ZnO in both instances On the contrary, in the Na-F codoping case, especially when the ratio of F and Na is 1:2, the Fermi-level shifts to the valence bands, the corresponding effective masses are small (0.7m0) and the formation energy is the lowest (-3.55 eV). These may indicate the formation of p-type ZnO having a good conductivity.
-
Keywords:
- codoping /
- p-type ZnO /
- first-principles /
- density of states
[1] Bagnall D M, Chen Y F, Zhu Z, Yao Z, Koyama S, Shen M Y, Goto T 1997 Appl. Phys. Lett. 70 2230
[2] Look D C, Reynolds D C, Litton C W, Jones R L, Eason D B, Cantwell G 2002 Appl. Phys. Lett. 81 1830
[3] Vispute R D, Talyansky V, Choopun S, Sharma R P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X, Slamanca-Riba L G, Lliadis A A, Jones K A 1998 Appl. Phys. Lett. 73 348
[4] Li Y J, Heo Y W, Kwon Y, Lp K, Pearton S J, Norton D P 2005 Appl. Phys. Lett. 87 072101
[5] Vaithianathan V, Lee B T, Chang C H, Asokan K, Kim S S 2006 Appl. Phys. Lett. 88 112103
[6] Wang G P, Chu S, Zhan N, Lin Y Q, Chernyak L, Liu J L 2011 Appl. Phys. Lett. 98 041107
[7] Friedrich F, Sieber L, Klimm C, Klaus M, Genzel C, Nickel N H 2011 Appl. Phys. Lett. 98 131902
[8] Zhang Z, Knutsen K E, Merz T, Kuznetsov A Y, Svensson B G, Brillson L J 2012 Appl. Phys. Lett. 100 042107
[9] Lin S S, He H P, Lu Y F 2009 J. Appl. Phys. 106 093508
[10] Yamamoto T, Katayama Y H 1999 J. Appl. Phys. 38 166
[11] He H P, Zhuge F, Ye Z Z, Zhu L P, Wang F Z, Zhao B H, Huang J Y 2006 J. Appl. Phys. 99 023503
[12] Yun E J, Park H S, Lee K H, Nam H G, Jung M 2008 J. Appl. Phys. 103 073507
[13] Li W J, Fang L, Qin G P, Ruan H B, Kong C Y, Zheng J, Bian P, Xu Q, Wu F 2013 Acta Phys. Sin. 62 167701 (in Chinese) [李万俊, 方亮, 秦国平, 阮海波, 孔春阳, 郑继, 卞萍, 徐庆, 吴芳2013 62 167701]
[14] Zuo C Y, Wen J, Bai Y L 2010 Chin. Phys. B 19 047101
[15] Liu H B, Pan X H, Ding P, Ye Z Z, He H P, Huang J Y 2012 Mate. Lett. 80 175
[16] Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Meta. 31 107
[17] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[18] Kohn W, Sham L J 1965 Phys. Rev. A 140 1133
[19] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[20] Wardle M G, Goss J P, Briddon P R 2006 Appl. Phys. Lett. 88 261906
[21] Imai Y, Watanabe A, Shimono I 2003 J. Mater. Electron: Mater. Electron 14 149
[22] Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (Beijing: Publishing House of Electronics Industry) p11, p105 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2011 半导体物理学(北京: 电子工业出版社) 第11, 105 页]
[23] Janotti A, Van D E, Chris G 2009 Rep. Prog. Phys. 72 126501
[24] Oshikiri M, Lmanaka Y, Aryasetiawan F, Kido G 2001 Physics B 298 472
-
[1] Bagnall D M, Chen Y F, Zhu Z, Yao Z, Koyama S, Shen M Y, Goto T 1997 Appl. Phys. Lett. 70 2230
[2] Look D C, Reynolds D C, Litton C W, Jones R L, Eason D B, Cantwell G 2002 Appl. Phys. Lett. 81 1830
[3] Vispute R D, Talyansky V, Choopun S, Sharma R P, Venkatesan T, He M, Tang X, Halpern J B, Spencer M G, Li Y X, Slamanca-Riba L G, Lliadis A A, Jones K A 1998 Appl. Phys. Lett. 73 348
[4] Li Y J, Heo Y W, Kwon Y, Lp K, Pearton S J, Norton D P 2005 Appl. Phys. Lett. 87 072101
[5] Vaithianathan V, Lee B T, Chang C H, Asokan K, Kim S S 2006 Appl. Phys. Lett. 88 112103
[6] Wang G P, Chu S, Zhan N, Lin Y Q, Chernyak L, Liu J L 2011 Appl. Phys. Lett. 98 041107
[7] Friedrich F, Sieber L, Klimm C, Klaus M, Genzel C, Nickel N H 2011 Appl. Phys. Lett. 98 131902
[8] Zhang Z, Knutsen K E, Merz T, Kuznetsov A Y, Svensson B G, Brillson L J 2012 Appl. Phys. Lett. 100 042107
[9] Lin S S, He H P, Lu Y F 2009 J. Appl. Phys. 106 093508
[10] Yamamoto T, Katayama Y H 1999 J. Appl. Phys. 38 166
[11] He H P, Zhuge F, Ye Z Z, Zhu L P, Wang F Z, Zhao B H, Huang J Y 2006 J. Appl. Phys. 99 023503
[12] Yun E J, Park H S, Lee K H, Nam H G, Jung M 2008 J. Appl. Phys. 103 073507
[13] Li W J, Fang L, Qin G P, Ruan H B, Kong C Y, Zheng J, Bian P, Xu Q, Wu F 2013 Acta Phys. Sin. 62 167701 (in Chinese) [李万俊, 方亮, 秦国平, 阮海波, 孔春阳, 郑继, 卞萍, 徐庆, 吴芳2013 62 167701]
[14] Zuo C Y, Wen J, Bai Y L 2010 Chin. Phys. B 19 047101
[15] Liu H B, Pan X H, Ding P, Ye Z Z, He H P, Huang J Y 2012 Mate. Lett. 80 175
[16] Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Meta. 31 107
[17] Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169
[18] Kohn W, Sham L J 1965 Phys. Rev. A 140 1133
[19] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[20] Wardle M G, Goss J P, Briddon P R 2006 Appl. Phys. Lett. 88 261906
[21] Imai Y, Watanabe A, Shimono I 2003 J. Mater. Electron: Mater. Electron 14 149
[22] Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (Beijing: Publishing House of Electronics Industry) p11, p105 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2011 半导体物理学(北京: 电子工业出版社) 第11, 105 页]
[23] Janotti A, Van D E, Chris G 2009 Rep. Prog. Phys. 72 126501
[24] Oshikiri M, Lmanaka Y, Aryasetiawan F, Kido G 2001 Physics B 298 472
计量
- 文章访问数: 7337
- PDF下载量: 1096
- 被引次数: 0