搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

选择性发射极晶体硅太阳电池的二维器件模拟及性能优化

贾晓洁 艾斌 许欣翔 杨江海 邓幼俊 沈辉

引用本文:
Citation:

选择性发射极晶体硅太阳电池的二维器件模拟及性能优化

贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉

Two-dimensional device simulation and performance optimization of crystalline silicon selective-emitter solar cell

Jia Xiao-Jie, Ai Bin, Xu Xin-Xiang, Yang Jiang-Hai, Deng You-Jun, Shen Hui
PDF
导出引用
  • 利用PC2D二维模拟软件对选择性发射极晶体硅太阳电池(SE电池)进行了器件模拟和参数优化的研究. 在对丝网印刷磷浆法制备的SE电池的实测典型电流-电压曲线实现完美拟合的基础上,全面系统地研究了栅线、基区、选择性发射区和背表面场层等的参数对电池性能的影响. 模拟表明:基区少子寿命、前表面复合速度和背表面复合速度是对电池效率影响幅度最大的三个参数. 在所研究的参数范围内,当基区少子寿命从50 s上升到600 s时,电池效率从18.53%上升到19.27%. 低的前表面复合速度是使发射区方块电阻配比优化有意义的前提. 要取得理想的电池效率,背表面复合速度需控制在500 cm/s以下. 此外,对于不同的前表面复合速度,电池效率的最大值总是在5090 / 的重掺区方阻、110180 /的轻掺区方阻的范围内取得. 对不同的栅线数目,重掺区宽度与栅线间距之比为32%时,电池的效率最高. 另外,在主栅结构保持较低面积比率的前提下,主栅数目的增加也可提高效率. 最后,通过优化p型SE电池的效率可达到20.45%.
    In this paper, device simulation and parameter optimization on crystalline silicon (c-Si) selective-emitter (SE) solar cell are performed by using PC2D two-dimensional simulator. On the basis of achieving perfect fitting to the measured I-V curve of a typical c-Si SE solar cell fabricated by screen printing phosphoric paste method, the effects of physical parameters of gridlines, base, selective emitter and back surface field layer on the optoelectronic performance of the SE solar cell are comprehensively and systematically investigated. Simulation results show that the base minority carrier lifetime, the front surface recombination velocity and the back surface recombination velocity are the three largest efficiency-affecting parameters. In the studied parameter range, when the base minority carrier lifetime rises from 50 s to 600 s, the cell efficiency increaes from 18.53% to 19.27%. Low front surface recombination velocity is the premise of making the optimization of selective emitter sheet resistance meaningful. To obtain an ideal efficiency, the back surface recombination velocity should be controlled to be under 500 cm/s. In addition, under different front surface recombination velocities, the maximum of cell efficiency is always achieved in a range of 5090 / heavily doped region sheet resistance and 110180 / lightly doped region sheet resistance. For different numbers of gridlines, when the radio of heavily doped region width to the gridline pitch equals 32%, the solar cell has the highest efficiency. Moreover, under the condition of low area radio of bas bar, increasing bus bar number appropriately can improve the efficiency. The efficiency of p-type SE solar cell reaches 20.45% after optimization.
      通信作者: 艾斌, stsab@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:50802118)、广东省战略性新兴产业核心技术攻关项目(批准号:2011A032304001)和中央高校基本研究经费青年教师培育项目(批准号:11lgpy40)资助的课题.
      Corresponding author: Ai Bin, stsab@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50802118), the Strategic Emerging Industries Core Technology Research Projects of Guangdong Province, China (Grant No. 2011A032304001), and the Central Universities Nurture Young Teachers of Basic Research Funding Projects, China (Grant No. 11lgpy40).
    [1]

    Kerr M J, Cuevas A 2002 J. Appl. Phys. 91 2473

    [2]

    Kopecek R, Libal J 2012 Proceedings of the 22nd International Photovoltaic Science and Engineering Conference Hangzhou, China, November 5–9, 2012 1-I-6

    [3]

    Hu Z Z, Liao X B, Diao H W, Xia C F, Xu L, Zeng X B, Hao H Y, Kong G L 2005 Acta Phys. Sin. 54 2302 (in Chinese) [胡志华, 廖显伯, 刁宏伟, 夏朝凤, 许玲, 曾湘波, 郝会颖, 孔光临 2005 54 2302]

    [4]

    Hu Z Z, Liao X B, Zeng X B, Xu Y Y, Zhang S B, Diao H W, Kong G L 2003 Acta Phys. Sin. 52 217 (in Chinese) [胡志华, 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临 2003 52 217]

    [5]

    Huang Z H, Zhang J J, Ni J, Cao Y, Hu Z Y, Li C, Geng X H, Zhao Y 2013 Chin. Phys. B 22 098803

    [6]

    Ai B, Zhang Y H, Deng Y J, Shen H 2012 Sci. China E 55 3187

    [7]

    Nijsa J, Demesmaekera E, Szlufcika J, Poortmansa J, Frissona L, De Clercqa K, Ghannamb M, Mertensa R, van Overstraetena R 1996 Sol. Energy Mater. Sol. Cells 41 101

    [8]

    de Rose R, Zanuccoli M, Magnone P, Tonini D, Galiazzo M, Cellere G, Frei M, Guo H W, Fiegna C, Sangiorgi E 2011 Proceedings of Photovoltaic Specialists Conference (PVSC) Seattle, USA, Junuary 19–24, 2011 p002556

    [9]

    Zanuccoli M, Bresciani P F, Frei M, Guo H W, Fang H, Agrawal M, Fiegna C, Sangiorgi E 2010 Proceedings of Photovoltaic Specialists Conference (PVSC) Honolulu, HI, USA, June 20–25, 2010 p002262

    [10]

    Rapolu K, Singh P, Shea S P 2009 Proceedings of Photovoltaic Specialists Conference (PVSC), Philadelphia PA, USA, June 7–12, 2009 p001048

    [11]

    Rapolu K, Singh P, Shea S P 2010 Proceedings of Photovoltaic Specialists Conference (PVSC), Honolulu HI, USA, June 20–25, 2010 p002227

    [12]

    Basore P, Cabanas-Holmen K 2012 PC2D Help Index 2013 p0609

    [13]

    Basore P, Cabanas-Holmen K 2011 The IEEE J. Photovolt. 1 72

    [14]

    Cabanas-Holmen K, Basore P 2012 Proceedings of 7th European Photovoltaic Solar Energy Conference Frankfurt, September 25, 2012 2BV.5.42

    [15]

    Cabanas-Holmen K, Basore P 2011 Proceedings of Silicon PV Leuven, Belgium

    [16]

    Meier D, Good E, Garcia R, Bingham B, Yamanaka S, Chandrasekaran V, Bucher C 2006 Proceedings of Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference Waikoloa HI, May 7–12, 2006 p1315

  • [1]

    Kerr M J, Cuevas A 2002 J. Appl. Phys. 91 2473

    [2]

    Kopecek R, Libal J 2012 Proceedings of the 22nd International Photovoltaic Science and Engineering Conference Hangzhou, China, November 5–9, 2012 1-I-6

    [3]

    Hu Z Z, Liao X B, Diao H W, Xia C F, Xu L, Zeng X B, Hao H Y, Kong G L 2005 Acta Phys. Sin. 54 2302 (in Chinese) [胡志华, 廖显伯, 刁宏伟, 夏朝凤, 许玲, 曾湘波, 郝会颖, 孔光临 2005 54 2302]

    [4]

    Hu Z Z, Liao X B, Zeng X B, Xu Y Y, Zhang S B, Diao H W, Kong G L 2003 Acta Phys. Sin. 52 217 (in Chinese) [胡志华, 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临 2003 52 217]

    [5]

    Huang Z H, Zhang J J, Ni J, Cao Y, Hu Z Y, Li C, Geng X H, Zhao Y 2013 Chin. Phys. B 22 098803

    [6]

    Ai B, Zhang Y H, Deng Y J, Shen H 2012 Sci. China E 55 3187

    [7]

    Nijsa J, Demesmaekera E, Szlufcika J, Poortmansa J, Frissona L, De Clercqa K, Ghannamb M, Mertensa R, van Overstraetena R 1996 Sol. Energy Mater. Sol. Cells 41 101

    [8]

    de Rose R, Zanuccoli M, Magnone P, Tonini D, Galiazzo M, Cellere G, Frei M, Guo H W, Fiegna C, Sangiorgi E 2011 Proceedings of Photovoltaic Specialists Conference (PVSC) Seattle, USA, Junuary 19–24, 2011 p002556

    [9]

    Zanuccoli M, Bresciani P F, Frei M, Guo H W, Fang H, Agrawal M, Fiegna C, Sangiorgi E 2010 Proceedings of Photovoltaic Specialists Conference (PVSC) Honolulu, HI, USA, June 20–25, 2010 p002262

    [10]

    Rapolu K, Singh P, Shea S P 2009 Proceedings of Photovoltaic Specialists Conference (PVSC), Philadelphia PA, USA, June 7–12, 2009 p001048

    [11]

    Rapolu K, Singh P, Shea S P 2010 Proceedings of Photovoltaic Specialists Conference (PVSC), Honolulu HI, USA, June 20–25, 2010 p002227

    [12]

    Basore P, Cabanas-Holmen K 2012 PC2D Help Index 2013 p0609

    [13]

    Basore P, Cabanas-Holmen K 2011 The IEEE J. Photovolt. 1 72

    [14]

    Cabanas-Holmen K, Basore P 2012 Proceedings of 7th European Photovoltaic Solar Energy Conference Frankfurt, September 25, 2012 2BV.5.42

    [15]

    Cabanas-Holmen K, Basore P 2011 Proceedings of Silicon PV Leuven, Belgium

    [16]

    Meier D, Good E, Garcia R, Bingham B, Yamanaka S, Chandrasekaran V, Bucher C 2006 Proceedings of Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference Waikoloa HI, May 7–12, 2006 p1315

  • [1] 周江平, 周媛媛, 周学军. 改进的测量设备无关协议参数优化方法.  , 2023, 72(12): 120303. doi: 10.7498/aps.72.20230179
    [2] 王仕东, 闫雅婷, 王瑞英, 朱志立, 谷锦华. 铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能.  , 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [3] 肖友鹏, 王怀平, 冯林. 硒化亚锗异质结太阳电池模拟研究.  , 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [4] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性.  , 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [5] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展.  , 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [6] 肖文波, 刘伟庆, 吴华明, 张华明. 太阳电池单二极管模型中的参数提取方法.  , 2018, 67(19): 198801. doi: 10.7498/aps.67.20181024
    [7] 肖友鹏, 王涛, 魏秀琴, 周浪. 硅异质结太阳电池的物理机制和优化设计.  , 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [8] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究.  , 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [9] 尹荣荣, 刘彬, 刘浩然, 李雅倩. 无线传感器网络中无标度拓扑的动态容错性分析.  , 2014, 63(11): 110205. doi: 10.7498/aps.63.110205
    [10] 韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮. 低温超薄高效Cu(In, Ga)Se2太阳电池的实现.  , 2013, 62(4): 048401. doi: 10.7498/aps.62.048401
    [11] 曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖. 微晶硅锗太阳电池本征层纵向结构的优化.  , 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [12] 周梅, 赵德刚. 结构参数对p-i-n结构InGaN太阳能电池性能的影响及机理.  , 2012, 61(16): 168402. doi: 10.7498/aps.61.168402
    [13] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征.  , 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [14] 梁林云, 戴松元, 胡林华, 戴俊, 刘伟庆. TiO2颗粒尺寸对染料敏化太阳电池内电子输运特性影响研究.  , 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [15] 於黄忠, 彭俊彪, 刘金成. MEH-PPV与TiO2共混体系太阳电池性能分析.  , 2009, 58(1): 669-673. doi: 10.7498/aps.58.669
    [16] 张新陆, 王月珠, 李 立, 崔金辉, 鞠有伦. 端面抽运Tm,Ho∶YLF连续激光器的参数优化与实验研究.  , 2008, 57(6): 3519-3524. doi: 10.7498/aps.57.3519
    [17] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究.  , 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [18] 胡志华, 廖显伯, 刁宏伟, 夏朝凤, 许 玲, 曾湘波, 郝会颖, 孔光临. 非晶硅太阳电池光照J-V特性的AMPS模拟.  , 2005, 54(5): 2302-2306. doi: 10.7498/aps.54.2302
    [19] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化.  , 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] 胡志华, 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临. 纳米硅(nc-Si:H )/晶体硅(c-Si)异质结太阳电池的数值模拟分析.  , 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
计量
  • 文章访问数:  6502
  • PDF下载量:  935
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-09
  • 修回日期:  2013-11-29
  • 刊出日期:  2014-03-05

/

返回文章
返回
Baidu
map