-
回旋管是最有希望应用于正在实施的国际热核实验反应堆计划的微波源器件,然而研究设计符合要求的回旋管还存在很多困难需要解决. 对170 GHz兆瓦级光滑同轴回旋管的注-波互作用进行了研究. 选取模式谱相对稀疏的TE31,12作为工作模式,利用Matlab编制源程序,计算了同轴回旋管的注-波耦合系数、起振电流.在考虑电子速度零散、腔壁电阻率和单模近似的基础上,对光滑同轴谐振腔的优化设计和注-波互作用进行了仿真,给出了磁场、电压、电流和内导体倾角等参量与回旋管效率的关系.结果表明,电压和磁场对回旋管效率影响较大,电子速度零散对回旋管效率影响较小,因而可降低电子枪的设计要求.此外,优化内导体倾角和同轴谐振腔结构参数可提高注-波互作用效率,降低电子速度零散对互作用效率的影响,获得了约50%的电子效率及1.7 MW输出功率.Gyrotrons are the most promising microwave source devices that can be used in the International Thermonuclear Experimental Reactor, but there are many difficulties to be solved in study and design of gyrotrons to meet the requirements. In this paper, the beam-wave interactions of a 170 GHz megawatt-level smooth-wall coaxial gyrotron are studied numerically. In order to attain high efficiency and stable radiation, TE31,12 mode that lies in a relative sparse spectrum is selected as the operating mode, and the beam-wave coupling coefficient and start oscillation current are calculated by a set of source codes developed by Matlab. Taking into account the electronic velocity spread and cavity wall resistivity, and based on a single-mode approximation, the optimization design and simulation of beam-wave interaction of a 170 GHz megawatt smooth-wall coaxial gyrotron have been fulfilled. The relationships between efficiency and magnetic field, and the voltage, current, taper angle of insert, and other parameters are presented. Results show that the voltage and magnetic field have great influence on efficiency; however, the current and velocity spread do change slightly, thus reduce the requirements of electron gun design. In addition, the optimized taper angle of insert and coaxial cavity geometry parameters can improve the efficiency, reduce the impact of velocity spread on efficiency, and can achieve an electronic efficiency around 50% and an output power 1.7 MW.
-
Keywords:
- coaxial cavity /
- beam-wave interaction /
- self-consistent /
- efficiency
[1] Dumbrajs O, Nusinovich G S 2004 IEEE Trans. Plasma Sci. 32 934
[2] Piosczyk B, Dammertz G, Dumbrajs O, Kartikeyan M V, Thumm M K, Yang X K 2004 IEEE Trans. Plasma Sci. 32 853
[3] Read M E, Nusinovich G S, Dumbrajs O, Bird G, Hogge J P, Kreischer K, Blank M 1996 IEEE Trans. Plasma Sci. 24 586
[4] Iatron C T, Braz O, Dammertz G, Kern S, Kuntze M, Piosczyk B, Thumm M 1997 IEEE Trans. Plasma Sci. 25 470
[5] Piosczyk B, Dammertz G, Dumbrajs O, Drumm O, Illy S, Jin J, Thumm M 2004 IEEE Trans. Plasma Sci. 32 413
[6] Kartikeyan M V, Borie E, Thumm M K A 2004 Gyrotrons: High-power Microwave and Millimeter Wave Technology (New York: Spring-verlag Berlin Heidelberg) p176
[7] Huang H J 1964 Microwave Principle (Beijing: Science Press) p177 (in Chinese) [黄宏嘉 1964 微波原理 (北京: 科学出版社) 第177页]
[8] Liu R, Li H F 2011 J. Electron. Sci. Technol. 9 221
[9] Qin M M, Luo Y, Yang S C, Wang J X 2013 High Power Laser Particle Beams 25 427 (in Chinese)[覃觅觅, 罗勇, 杨仕超, 王建勋 2013 强激光与粒子束 25 427]
[10] Fliflet A W, Read M E, Chu K R, Seeley R 1982 Int. J. Electron. 53 505
[11] Kong Y Y, Zhang S C 2011 Acta Phys. Sin. 60 095201 (in Chinese)[孔艳岩, 张世昌 2011 60 095201]
[12] Wu J, Xiao C Y 2010 Chin. Phys. B 19 044101
[13] Luo J R, Cui J, Zhu M, Guo W 2013 Chin. Phys. B 22 067803
[14] Li H F, Du P Z, Yang S W, Xie Z L, Zhou X L, Wan H R, Huang Y 2000 Acta Phys. Sin. 49 312 (in Chinese)[李宏福, 杜品忠, 杨仕文, 谢仲怜, 周晓岚, 万洪蓉, 黄勇 2000 49 312]
[15] Chu K R, Lin A T 1988 IEEE Trans. Plasma Sci. 16 90
[16] Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R, Chen S H, Yang T T, Dialetis D J 1999 IEEE Trans. Plasma Sci. 27 391
[17] Kumar N, Singh U, Singh T P, Sinha A K 2011 J. Infrared Millim. THz Waves 32 186
[18] Pu R F, Nusinovich G S, Sinitsyn O V, Antonsen Jr T M 2011 Phys. Plasmas 18 023107
[19] Advani R, Hogge J P, Kreischer K E, Pedrozzi M, Read M E, Sirigiri J R, Temkin R J 2001 IEEE Trans. Plasma Sci. 29 943
[20] Beringer M H, Kern S, Thumm M 2013 IEEE Trans. Plasma Sci. 41 853
-
[1] Dumbrajs O, Nusinovich G S 2004 IEEE Trans. Plasma Sci. 32 934
[2] Piosczyk B, Dammertz G, Dumbrajs O, Kartikeyan M V, Thumm M K, Yang X K 2004 IEEE Trans. Plasma Sci. 32 853
[3] Read M E, Nusinovich G S, Dumbrajs O, Bird G, Hogge J P, Kreischer K, Blank M 1996 IEEE Trans. Plasma Sci. 24 586
[4] Iatron C T, Braz O, Dammertz G, Kern S, Kuntze M, Piosczyk B, Thumm M 1997 IEEE Trans. Plasma Sci. 25 470
[5] Piosczyk B, Dammertz G, Dumbrajs O, Drumm O, Illy S, Jin J, Thumm M 2004 IEEE Trans. Plasma Sci. 32 413
[6] Kartikeyan M V, Borie E, Thumm M K A 2004 Gyrotrons: High-power Microwave and Millimeter Wave Technology (New York: Spring-verlag Berlin Heidelberg) p176
[7] Huang H J 1964 Microwave Principle (Beijing: Science Press) p177 (in Chinese) [黄宏嘉 1964 微波原理 (北京: 科学出版社) 第177页]
[8] Liu R, Li H F 2011 J. Electron. Sci. Technol. 9 221
[9] Qin M M, Luo Y, Yang S C, Wang J X 2013 High Power Laser Particle Beams 25 427 (in Chinese)[覃觅觅, 罗勇, 杨仕超, 王建勋 2013 强激光与粒子束 25 427]
[10] Fliflet A W, Read M E, Chu K R, Seeley R 1982 Int. J. Electron. 53 505
[11] Kong Y Y, Zhang S C 2011 Acta Phys. Sin. 60 095201 (in Chinese)[孔艳岩, 张世昌 2011 60 095201]
[12] Wu J, Xiao C Y 2010 Chin. Phys. B 19 044101
[13] Luo J R, Cui J, Zhu M, Guo W 2013 Chin. Phys. B 22 067803
[14] Li H F, Du P Z, Yang S W, Xie Z L, Zhou X L, Wan H R, Huang Y 2000 Acta Phys. Sin. 49 312 (in Chinese)[李宏福, 杜品忠, 杨仕文, 谢仲怜, 周晓岚, 万洪蓉, 黄勇 2000 49 312]
[15] Chu K R, Lin A T 1988 IEEE Trans. Plasma Sci. 16 90
[16] Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R, Chen S H, Yang T T, Dialetis D J 1999 IEEE Trans. Plasma Sci. 27 391
[17] Kumar N, Singh U, Singh T P, Sinha A K 2011 J. Infrared Millim. THz Waves 32 186
[18] Pu R F, Nusinovich G S, Sinitsyn O V, Antonsen Jr T M 2011 Phys. Plasmas 18 023107
[19] Advani R, Hogge J P, Kreischer K E, Pedrozzi M, Read M E, Sirigiri J R, Temkin R J 2001 IEEE Trans. Plasma Sci. 29 943
[20] Beringer M H, Kern S, Thumm M 2013 IEEE Trans. Plasma Sci. 41 853
计量
- 文章访问数: 6047
- PDF下载量: 751
- 被引次数: 0