搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于刻蚀速率匹配的离子刻蚀产额优化建模方法

高扬福 宋亦旭 孙晓民

引用本文:
Citation:

基于刻蚀速率匹配的离子刻蚀产额优化建模方法

高扬福, 宋亦旭, 孙晓民

An optimization method for ion etching yield modeling based on etching velocity matching

Gao Yang-Fu, Song Yi-Xu, Sun Xiao-Min
PDF
导出引用
  • 随着微电子产业的不断发展,刻蚀特征尺度达到纳米级,等离子体刻蚀工艺过程机理研究越来越受到重视. 刻蚀表面仿真是研究离子刻蚀特性的重要方法. 在离子刻蚀表面仿真中,离子刻蚀产额模型是研究刻蚀机理的重要模型,也是元胞自动机等仿真方法的重要基础. 为了解决利用传统方法无法得到准确刻蚀产额模型参数的问题,本文提出一种基于刻蚀速率匹配的离子刻蚀产额优化建模方法,该方法以实际刻蚀速率与模拟刻蚀速率之间的均方差为优化目标,利用基于分解的多目标进化算法来优化离子的刻蚀产额模型参数,并将得到的刻蚀产额模型参数应用到采用元胞方法的刻蚀工艺的实际仿真过程中. 实验结果表明了该刻蚀产额优化建模方法的有效性.
    With the constant development of the microelectronics industry, the etching scale has come up to nanoscale, which makes the plasma etching mechanism attract more and more attention. The profile surface simulation is one of the most significant technologies for the study of ion etching. In the process of ion etching surface simulation, the ion etching yield model serves as an important model for the study of etching mechanism as well as the basic foundation of some simulations such as cellular automata. In order to solve the problem that it is difficult to achieve accurate parameters of etching yield model by adopting the traditional method, the paper proposes an optimization method for ion etching yield modeling based on etching velocity matching. Aiming at reducing the mean square error between the simulated etching velocity and the real etching velocity, it optimizes the parameters of ion etching yield modeling by using the decomposition-based multi-object evolution algorithm, which then is applied to etching simulation process on the basis of cellular automata. And the validity of the proposed method was verified by the experimental results.
    • 基金项目: 国家科技重大专项(批准号:2011ZX2403-002)资助的课题.
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX2403-002).
    [1]

    Wu J, Ma Z B, Shen W L, Yan L, Pan X, Wang J H 2013 Acta Phys. Sin. 62 075202 (in Chinese) [吴俊, 马志斌, 沈武林, 严垒, 潘鑫, 汪建华 2013 62 075202]

    [2]

    Levinson J A, Shaqfeh E S G, Balooch M, Hamza A V 2000 J. Vac. Sci. Technol. B 18 172

    [3]

    Tuda M, Nishikawa K, Ono K 1997 J. Appl. Phys. 81 960

    [4]

    Osher S, Sethian J A 1988 J. Comput. Phys. 79 12

    [5]

    Osher S, Fedkiw R P 2001 J. Comput. Phys. 169 463

    [6]

    Kawai H 2008 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [7]

    Saussac J, Margot J, Chaker M 2009 J. Vac. Sci. Technol. A 27 130

    [8]

    Yang H J, Song Y X, Zheng S L, Jia P F 2013 Acta Phys. Sin. 62 208201 (in Chinese) [杨宏军, 宋亦旭, 郑树琳, 贾培发 2013 62 208201]

    [9]

    Li Z, Xu G A, Ban X F, Zhang Y, Hu Z M 2013 Acta Phys. Sin. 62 200203 (in Chinese) [李钊, 徐国爱, 班晓芳, 张毅, 胡正名 2013 62 200203]

    [10]

    Zhao H T, Mao H Y 2013 Acta Phys. Sin. 62 060501 (in Chinese) [赵韩涛, 毛宏燕 2013 62 060501]

    [11]

    Yong G, Huang H J, Xu Y 2013 Acta Phys. Sin. 62 010506 (in Chinese) [永贵, 黄海军, 许岩 2013 62 010506]

    [12]

    Chang J P, Arnold J C, Zau G C H, Shin H S, Sawin H H 1997 J. Vac. Sci. Technol. A 15 1853

    [13]

    Gou F, Kleyn A W, Gleeson M A 2008 Int. Rev. Phys. Chem. 27 229

    [14]

    Zheng S L, Song Y X, Sun X M 2013 Acta Phys. Sin. 62 108201 (in Chinese) [郑树琳, 宋亦旭, 孙晓民 2013 62 108201]

    [15]

    Steinbruchel C 1989 Appl. Phys. Lett. 55 1960

    [16]

    Osao Y, Ono K 2005 Jpn. J. Appl. Phys. 44 8650

    [17]

    Yang H J, Song Y X, Zheng S L, Wang L H, Jia P F 2013 Proc. 25th Chinese Control and Decision Confe- rence Guiyang, China, May 25-27, 2013 p2913

    [18]

    Liu H H, Liu Y H 2012 Chin. Phys. B 21 026102

    [19]

    Liu J F 2009 Chin. Phys. B 18 2615

    [20]

    Zhang Q, Li H 2007 IEEE Trans. Evolut. Comput. 11 712

    [21]

    Li H, Zhang Q 2009 IEEE Trans. Evolut. Comput. 12 284

    [22]

    Chiaramonte L, Colombo R, Fazio G, Magna A L 2012 Comp. Mater. Sci. 54 227

  • [1]

    Wu J, Ma Z B, Shen W L, Yan L, Pan X, Wang J H 2013 Acta Phys. Sin. 62 075202 (in Chinese) [吴俊, 马志斌, 沈武林, 严垒, 潘鑫, 汪建华 2013 62 075202]

    [2]

    Levinson J A, Shaqfeh E S G, Balooch M, Hamza A V 2000 J. Vac. Sci. Technol. B 18 172

    [3]

    Tuda M, Nishikawa K, Ono K 1997 J. Appl. Phys. 81 960

    [4]

    Osher S, Sethian J A 1988 J. Comput. Phys. 79 12

    [5]

    Osher S, Fedkiw R P 2001 J. Comput. Phys. 169 463

    [6]

    Kawai H 2008 Ph. D. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [7]

    Saussac J, Margot J, Chaker M 2009 J. Vac. Sci. Technol. A 27 130

    [8]

    Yang H J, Song Y X, Zheng S L, Jia P F 2013 Acta Phys. Sin. 62 208201 (in Chinese) [杨宏军, 宋亦旭, 郑树琳, 贾培发 2013 62 208201]

    [9]

    Li Z, Xu G A, Ban X F, Zhang Y, Hu Z M 2013 Acta Phys. Sin. 62 200203 (in Chinese) [李钊, 徐国爱, 班晓芳, 张毅, 胡正名 2013 62 200203]

    [10]

    Zhao H T, Mao H Y 2013 Acta Phys. Sin. 62 060501 (in Chinese) [赵韩涛, 毛宏燕 2013 62 060501]

    [11]

    Yong G, Huang H J, Xu Y 2013 Acta Phys. Sin. 62 010506 (in Chinese) [永贵, 黄海军, 许岩 2013 62 010506]

    [12]

    Chang J P, Arnold J C, Zau G C H, Shin H S, Sawin H H 1997 J. Vac. Sci. Technol. A 15 1853

    [13]

    Gou F, Kleyn A W, Gleeson M A 2008 Int. Rev. Phys. Chem. 27 229

    [14]

    Zheng S L, Song Y X, Sun X M 2013 Acta Phys. Sin. 62 108201 (in Chinese) [郑树琳, 宋亦旭, 孙晓民 2013 62 108201]

    [15]

    Steinbruchel C 1989 Appl. Phys. Lett. 55 1960

    [16]

    Osao Y, Ono K 2005 Jpn. J. Appl. Phys. 44 8650

    [17]

    Yang H J, Song Y X, Zheng S L, Wang L H, Jia P F 2013 Proc. 25th Chinese Control and Decision Confe- rence Guiyang, China, May 25-27, 2013 p2913

    [18]

    Liu H H, Liu Y H 2012 Chin. Phys. B 21 026102

    [19]

    Liu J F 2009 Chin. Phys. B 18 2615

    [20]

    Zhang Q, Li H 2007 IEEE Trans. Evolut. Comput. 11 712

    [21]

    Li H, Zhang Q 2009 IEEE Trans. Evolut. Comput. 12 284

    [22]

    Chiaramonte L, Colombo R, Fazio G, Magna A L 2012 Comp. Mater. Sci. 54 227

  • [1] 白胜波, 陈志华, 张焕好, 陈高捷, 曹世程, 张升博. 硅原子层刻蚀流程的速率优化.  , 2023, 72(21): 215214. doi: 10.7498/aps.72.20231022
    [2] 张权治, 张雷宇, 马方方, 王友年. 多孔材料的低温刻蚀技术.  , 2021, 70(9): 098104. doi: 10.7498/aps.70.20202245
    [3] 赵杰, 唐德礼, 许丽, 李平川, 张帆, 李建, 桂兵仪. 阳极磁屏蔽对阳极层霍尔推力器内磁极刻蚀的影响.  , 2019, 68(21): 215202. doi: 10.7498/aps.68.20190654
    [4] 李冰, 马萌晨, 雷明珠. 粗糙海面与其上方多目标复合散射的混合算法.  , 2017, 66(5): 050301. doi: 10.7498/aps.66.050301
    [5] 高文, 汤洋, 朱明. 目标跟踪中目标模型更新问题的半监督学习算法研究.  , 2015, 64(1): 014205. doi: 10.7498/aps.64.014205
    [6] 刘亚奇, 刘成城, 赵拥军, 朱健东. 基于时频分析的多目标盲波束形成算法.  , 2015, 64(11): 114302. doi: 10.7498/aps.64.114302
    [7] 寻之朋, 唐刚, 夏辉, 郝大鹏, 宋丽建, 杨毅. 2+1维刻蚀模型生长表面等高线的共形不变性研究.  , 2014, 63(15): 150502. doi: 10.7498/aps.63.150502
    [8] 高扬福, 孙晓民, 宋亦旭, 阮聪. 结合实际刻蚀数据的离子刻蚀产额优化建模方法.  , 2014, 63(24): 248201. doi: 10.7498/aps.63.248201
    [9] 郑树琳, 宋亦旭, 孙晓民. 基于三维元胞模型的刻蚀工艺表面演化方法.  , 2013, 62(10): 108201. doi: 10.7498/aps.62.108201
    [10] 柴争义, 陈亮, 朱思峰. 混沌免疫多目标算法求解认知引擎参数优化问题.  , 2012, 61(5): 058801. doi: 10.7498/aps.61.058801
    [11] 张文专, 龙文, 焦建军. 基于差分进化算法的混沌时间序列预测模型参数组合优化.  , 2012, 61(22): 220506. doi: 10.7498/aps.61.220506
    [12] 谢裕颖, 唐刚, 寻之朋, 韩奎, 夏辉, 郝大鹏, 张永伟, 李炎. 随机稀释基底上刻蚀模型动力学标度行为的数值模拟研究.  , 2012, 61(7): 070506. doi: 10.7498/aps.61.070506
    [13] 张永伟, 唐刚, 韩奎, 寻之朋, 谢裕颖, 李炎. 分形基底上刻蚀模型动力学标度行为的数值模拟研究.  , 2012, 61(2): 020511. doi: 10.7498/aps.61.020511
    [14] 朱樟明, 万达经, 杨银堂. 一种基于多目标约束的互连线宽和线间距优化模型.  , 2010, 59(7): 4837-4842. doi: 10.7498/aps.59.4837
    [15] 吕 玲, 龚 欣, 郝 跃. 感应耦合等离子体刻蚀p-GaN的表面特性.  , 2008, 57(2): 1128-1132. doi: 10.7498/aps.57.1128
    [16] 曹 萌, 吴惠桢, 刘 成, 劳燕锋, 黄占超, 谢正生, 张 军, 江 山. 干法刻蚀影响应变量子阱发光的机理研究.  , 2007, 56(2): 1027-1031. doi: 10.7498/aps.56.1027
    [17] 王长顺, 潘 煦, Urisu Tsuneo. 同步辐射光激励的二氧化硅薄膜刻蚀研究.  , 2006, 55(11): 6163-6167. doi: 10.7498/aps.55.6163
    [18] 王 森, 俞国军, 巩金龙, 李勤涛, 朱德彰, 朱志远. 低能氩离子束对多孔铝阳极氧化膜表面的刻蚀效应研究.  , 2006, 55(3): 1517-1522. doi: 10.7498/aps.55.1517
    [19] 贺莉蓉, 顾春明, 沈文忠, 曹俊诚, 小川博司, 郭其新. 反应离子刻蚀ZnTe的THz辐射和探测研究.  , 2005, 54(10): 4938-4943. doi: 10.7498/aps.54.4938
    [20] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用.  , 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
计量
  • 文章访问数:  6301
  • PDF下载量:  419
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-20
  • 修回日期:  2013-11-07
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map